Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(5): 21, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219509

RESUMO

Purpose: Microperimetry provides an accurate assessment of central retinal sensitivity due to its fundus-tracking capability, but it has limited reliability indicators. One method currently employed, fixation loss, samples the optic nerve blind spot for positive responses; however, it is unclear if these responses arise from unintentional button presses or from tracking failure leading to stimuli misplacement. We investigated the relationship between blind spot scotoma positive responses (termed scotoma responses) and fixation. Methods: Part 1 of the study involved a custom grid of 181 points centered on the optic nerve that was constructed to map physiological blind spots in primary and simulated eccentric fixation positions. Scotoma responses and the 63% and 95% fixation bivariate contour ellipse areas (BCEA63 and BCEA95) were analyzed. In Part 2, fixation data from controls and patients with retinal diseases (234 eyes from 118 patients) were collected. Results: Part 1, a linear mixed model of 32 control participants, demonstrated significant (P < 0.001) correlation between scotoma responses and BCEA95. In Part 2, the upper 95% confidence intervals for BCEA95 were 3.7 deg2 for controls, 27.6 deg2 for choroideremia, 23.1 deg2 for typical rod-cone dystrophies, 21.4 deg2 for Stargardt disease, and 111.3 deg2 for age-related macular degeneration. Incorporating all pathology groups into an overall statistic resulted in an upper limit BCEA95 = 29.6 deg2. Conclusions: Microperimetry reliability is significantly correlated to fixation performance, and BCEA95 provides a surrogate marker for test accuracy. Examinations of healthy individuals and patients with retinal disease are deemed unreliable if BCEA95 > 4 deg2 and BCEA95 > 30 deg2, respectively. Translational Relevance: Microperimetry reliability should be assessed using fixation performance as summarized by BCEA95 rather than the level of fixation losses.


Assuntos
Doenças Retinianas , Escotoma , Humanos , Reprodutibilidade dos Testes , Testes de Campo Visual , Fundo de Olho
2.
Transl Vis Sci Technol ; 11(5): 15, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35576214

RESUMO

Purpose: Peripheral visual fields have not been as well defined by static automated perimetry as kinetic perimetry in RPGR-related retinitis pigmentosa. This study explores the pattern and sensitivities of peripheral visual fields, which may provide an important end point when assessing interventional clinical trials. Methods: A retrospective observational cross-sectional study of 10 genetically confirmed RPGR subjects was performed. Visual fields were obtained using the Octopus 900 perimeter. Interocular symmetry and repeatability were quantified. Visual fields were subdivided into central and peripheral subfields for analysis. Results: Mean patient age was 32 years old (20 to 49 years old). Average mean sensitivity was 7 dB (SD = 3.67 dB) and 6.8 dB (SD = 3.4 dB) for the right and left eyes, respectively, demonstrating interocular symmetry. Coefficient of repeatability for overall mean sensitivity: <2 dB. Nine out of 10 subjects had a preserved inferotemporal subfield, whose mean sensitivity was highly correlated to the central field (r2 = 0.78, P = 0.002 and r2 = 0.72, P = 0.002 for the right and left eyes, respectively). Within the central field, sensitivities were greater in the temporal than the nasal half (t-test, P = 0.01 and P = 0.03 for the right and left eyes, respectively). Conclusions: Octopus static-automated perimeter demonstrates good repeatability. Interocular symmetry permits use of the noninterventional eye as an internal control. In this cohort, the inferotemporal and central visual fields are preserved into later disease stages likely mapping to populations of surviving cones. Translational Relevance: A consistently preserved inferotemporal island of vision highly correlated to that of the central visual field may have significance as a possible future therapeutic site.


Assuntos
Retinose Pigmentar , Testes de Campo Visual , Adulto , Animais , Estudos Transversais , Proteínas do Olho , Humanos , Pessoa de Meia-Idade , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Estudos Retrospectivos , Testes de Campo Visual/métodos , Campos Visuais , Adulto Jovem
3.
Transl Vis Sci Technol ; 10(7): 12, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34110386

RESUMO

Purpose: Mean retinal sensitivity is the main output measure used in microperimetry. It is, however, of limited use in patients with poor vision because averaging is weighted toward zero in those with significant scotomas creating an artificial floor effect. In contrast, volumetric measures avoid these issues and are displayed graphically as a hill of vision. Methods: An open-source program was created to manipulate raw sensitivity threshold data files obtained from MAIA microperimetry. Thin plate spline interpolated heat maps and three-dimensional hill of vision plots with an associated volume were generated. Retrospective analyses of microperimetry volumes were undertaken in patients with a range of retinal diseases to assess the qualitative benefits of three-dimensional visualization and volumetric measures. Simulated pathology was applied to radial grid patterns to investigate the performance of volumetric sensitivity in nonuniform grids. Results: Volumetric analyses from microperimetry in RPGR-related retinitis pigmentosa, choroideremia, Stargardt disease, and age-related macular degeneration were analyzed. In simulated nonuniform testing grids, volumetric sensitivity was able to detect differences in retinal sensitivity where mean sensitivity could not. Conclusions: Volumetric measures do not suffer from averaging issues and demonstrate superior performance in nonuniform testing grids. Additionally, volume measures enable detection of localized retinal sensitivity changes that might otherwise be undetectable in a mean change. Translational Relevance: As microperimetry has become an outcome measure in several gene-therapy clinical trials, three-dimensional visualization and volumetric sensitivity enables a complementary analysis of baseline disease characteristics and subsequent response to treatment, both as a signal of safety and efficacy.


Assuntos
Testes de Campo Visual , Campos Visuais , Proteínas do Olho , Humanos , Retina/diagnóstico por imagem , Estudos Retrospectivos , Acuidade Visual
4.
Acta Ophthalmol ; 99(8): 819-825, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33783139

RESUMO

Microperimetry, or fundus-tracked perimetry, is a precise static-automated perimetric technique to assess central retinal function. As visual acuity only deteriorates at a late disease stage in RPGR-related retinitis pigmentosa (RP), alternative markers for disease progression are of great utility. Microperimetry assessment has been of critical value as an outcome measure in a recently reported phase I/II gene therapy trial for RPGR-related RP, both in terms of detecting safety and efficacy signals. Here, we performed a review of the literature. We describe the principles of microperimetry before outlining specific parameters that may be useful as outcome measures in clinical trial settings. The current state of structure-function correlations between short-wavelength autofluorescence, optical coherence tomography and adaptive optics in RPGR-related retinitis pigmentosa are also summarized.


Assuntos
DNA/genética , Proteínas do Olho/genética , Mutação , Retina/diagnóstico por imagem , Retinose Pigmentar/diagnóstico , Testes de Campo Visual/métodos , Análise Mutacional de DNA , Eletrorretinografia , Proteínas do Olho/metabolismo , Humanos , Linhagem , Retina/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA