Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 88(10): 5444-52, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27116118

RESUMO

With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 µM, LOQ 72 µM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible.


Assuntos
Ácidos Borônicos/química , Espectrometria de Fluorescência , Álcoois Açúcares/análise , Viologênios/química , Análise Discriminante , Corantes Fluorescentes/química , Lactulose/análise , Limite de Detecção , Manitol/análise , Permeabilidade , Análise de Componente Principal , Xilose/análise
2.
J Chem Phys ; 136(19): 194305, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22612093

RESUMO

We have systematically calculated the ground state geometries, relative stability, electronic structure, and spectroscopic properties of PtCl(n) (n = 1-7) clusters. The bonding in these clusters is dominated by covalent interaction. In neutral clusters, chlorine atoms are chemically bound to Pt up to n = 5. However, in neutral PtCl(6) and PtCl(7) clusters, two of the chlorine atoms bind molecularly while the remaining bind as individual atoms. In the negative ions, this happens only in the case of PtCl(7) cluster. The geometries of both neutral and anionic clusters can be considered as fragments of an octahedron and are attributed to the stabilization associated with splitting of partially filled d orbitals under the chloride ligand field. The electron affinity of PtCl(n) clusters rises steadily with n, reaching a maximum value of 5.81 eV in PtCl(5). PtCl(n) clusters with n ≥ 3 are all superhalogens with electron affinities larger than that of chlorine. The accuracy of our results has been verified by carrying out photoelectron spectroscopy experiments on PtCl(n)(-) anion clusters.

3.
Plant Mol Biol ; 75(6): 555-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21279669

RESUMO

Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.


Assuntos
Escherichia coli/metabolismo , Ácido Gálico/metabolismo , Juglans/metabolismo , Oxirredutases do Álcool/metabolismo , Cromatografia de Fase Reversa , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Juglans/genética , Oxirredução , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Nicotiana/genética , Nicotiana/metabolismo
4.
Organometallics ; 28(12): 3552-3566, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21532981

RESUMO

We report a detailed and full computational investigation on the hydrovinylation reaction of styrene with the Ni(II)-phospholane catalytic system, which was originally presumed to proceed through a cationic mechanism involving a nickel hydride intermediate. The following general features emerge from this study on a specific catalyst complex that was found to give quantitative yield and moderate selectivity: (a) the activation barrier for the initiation (18.8 kcal/mol) is higher than that for the reaction due to a low-lying square-planar pentenyl chelate intermediate originating from a Ni(II)-allyl catalyst precursor. Consequently there is an induction period for the catalysis; (b) the exit of product from the catalyst is via a ß-H-transfer step instead of the usual ß-H elimination pathway, which has a very high activation energy due to a trans effect of the phospholane ligand; (c) the turnover-limiting and enantio- determining transition state is also the ß-H-transfer; (d) because of the absence of a hydride intermediate, the unwanted isomerization of the product is prevented; (e) since the enantio-discrimination is decided at the H-transfer stage itself, the configuration of the product in a catalytic cycle influences the enantioselectivity in the subsequent cycle; (f) the trans effect of the sole strong ligand in the d8 square-planar Ni(II), the stability of the η(3)-benzyl intermediate, and the availability of three coordination sites enable regioselective hydrovinylation over the possible oligomerization/polymerization of the olefin substrates and linear hydrovinylation. This work has also confirmed the previously recognized role of the hemilabile group at various stages in the mechanism.

5.
J Am Chem Soc ; 129(15): 4620-32, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17375920

RESUMO

We provide a simple explanation for X-H bond contraction and the associated blue shift and decrease of intensity in IR spectrum of the so-called improper hydrogen bonds. This explanation organizes hydrogen bonds (HBs) with a seemingly random relationship between the X-H bond length (and IR frequency and its intensity) to its interaction energy. The factors which affect the X-H bond in all X-H...Y HBs can be divided into two parts: (a) The electron affinity of X causes a net gain of electron density at the X-H bond region in the presence of Y and encourages an X-H bond contraction. (b) The well understood attractive interaction between the positive H and electron rich Y forces an X-H bond elongation. For electron rich, highly polar X-H bonds (proper HB donors) the latter almost always dominates and results in X-H bond elongation, whereas for less polar, electron poor X-H bonds (pro-improper HB donors) the effect of the former is noticeable if Y is not a very strong HB acceptor. Although both the above factors increase with increasing HB acceptor ability of Y, the shortening effect dominates over a range of Ys for suitable pro-improper X-Hs resulting in a surprising trend of decreasing X-H bond length with increasing HB acceptor ability. The observed frequency and intensity variations follow naturally. The possibility of HBs which do not show any IR frequency change in the X-H stretching mode also directly follows from this explanation.

6.
Org Biomol Chem ; 4(14): 2685-9, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16826292

RESUMO

The metal free, single amino acid-catalyzed asymmetric desymmetrization (ADS) of meso-compounds with nitrosobenzene has been investigated using DFT. In this communication, we describe the role of electrostatic and dipole-dipole interactions in amino acid-catalyzed reactions, which has not previously been invoked in discussions of these important reactions.


Assuntos
Prolina/química , Catálise , Simulação por Computador , Estrutura Molecular , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA