Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Planta ; 259(6): 136, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679693

RESUMO

MAIN CONCLUSION: Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.


Assuntos
Fator de Ligação a CCAAT , Eleusine , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Desidratação/genética , Secas , Eleusine/genética , Eleusine/metabolismo , Eleusine/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
2.
Planta ; 258(2): 29, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358736

RESUMO

MAIN CONCLUSION: The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.


Assuntos
Milhetes , Fatores de Transcrição , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Grão Comestível/genética , Agricultura
3.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975979

RESUMO

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

4.
Planta ; 250(3): 783-801, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30623242

RESUMO

MAIN CONCLUSION: Emerging insights in buckwheat molecular genetics allow the integration of genomics driven breeding to revive this ancient crop of immense nutraceutical potential from Asia. Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.


Assuntos
Fagopyrum/genética , Melhoramento Vegetal , Produção Agrícola , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fagopyrum/crescimento & desenvolvimento , Genoma de Planta/genética , Genômica , Valor Nutritivo , Melhoramento Vegetal/métodos
5.
Heliyon ; 10(18): e36370, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315219

RESUMO

The Nuclear Factor Y (NF-Y) is one of the widely explored transcription factors (TFs) family for its potential role in regulating molecular mechanisms related to stress response and developmental processes. Finger millet (Eleusine coracana (L.) Gaertn) is a hardy and stress-tolerant crop where partial efforts have been made to characterize a few transcription factors. However, the NF-Y TF is still poorly explored and not well documented. The present study aims to identify and characterize NF-Y genes of finger millet using a bioinformatics approach. Genome mining revealed 57 EcNF-Y (Eleusine coracana Nuclear Factor-Y) genes in finger millet, comprising 18 NF-YA, 23 NF-YB, and 16 NF-YC genes. The gene organization, conserved motif, cis-regulatory elements, miRNA target sites, and three-dimensional structures of these NF-Ys were analyzed. The nucleotide substitution rate and gene duplication analysis showed the presence of 7 EcNF-YA, 10 EcNF-YB, and 8 EcNF-YC paralogous genes and revealed the possibilities of synonymous substitution and stabilizing selection during evolution. The role of NF-Ys of finger millet in abiotic stress tolerance was evident by the presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), MYB (myeloblastosis) or MYC (myelocytomatosis). Twenty-three isoforms of miR169, mainly targeting a single NF-Y gene, i.e., the EcNF-YA13 gene, were observed. This interaction could be targeted for finger millet improvement against Magnaporthe oryzae (blast fungus). Therefore, by this study, the putative functions related to biotic and abiotic stress tolerance for many of the EcNF-Y genes could be explored in finger millet.

6.
Sci Rep ; 14(1): 3382, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336984

RESUMO

Temperature-dependent dc-magnetization and ac-susceptibility curves have been recorded for series of single and double layered Ruddlesden-Popper multicomponent perovskites with chemical formula A2BO4 and A3B2O7, respectively, with (La, Sr) on A-sites and up to 7 different cations on the B-sites (Ti, Cr, Mn, Fe, Co, Ni, Cu). The phase purity and chemical homogeneity of the compounds were investigated by X-ray diffraction and energy dispersive X-ray spectroscopy. Independently of the composition, spin glassiness is observed in both systems. Scaling analyses suggest the materials undergo spin glass phase transitions at low temperatures. Yet, qualitative differences are observed between the single-layered and double-layered systems, which are discussed in the light of the spatial dimensionality and magnetic interaction in layered oxide perovskites.

7.
J Phys Condens Matter ; 36(35)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38740073

RESUMO

Local magnetostructural changes and dynamical spin fluctuations in doubly diluted spinel TixMn1‒x(FeyCo1‒y)2O4has been reported by means of neutron diffraction and magnetization studies. Two distinct sets of compositions (i)x(Ti) = 0.20 andy(Fe) = 0.18; (ii)x(Ti) = 0.40 andy(Fe) = 0.435 have been considered for this study. The first compound of equivalent stoichiometry Ti0.20Mn0.80Fe0.36Co1.64O4exhibits enhanced tetragonal distortion across the ferrimagnetic transition temperatureTC= 258 K in comparison to the end compound MnCo2O4(TC∼ 180 K) with a characteristic ratioct/√2atof 0.99795(8) demonstrating robust lattice-spin-orbital coupling. However, in the second case Ti0.40Mn0.60Fe0.87Co1.13O4with higherB-site compositions, the presence of Jahn-Teller ions with distinct behavior appears to counterbalance the strong tetragonal distortion thereby ceasing the lattice-spin-orbital coupling. Both the investigated systems show the coexistence of noncollinear antiferromagnetic and ferrimagnetic components in cubic and tetragonal settings. On the other hand, the dynamical ac-susceptibility,χac(T) reveals a cluster spin-glass state with Gabay-Toulouse (GT) like mixed phases behaviour belowTC. Such dispersive behaviour appears to be sensitive to the level of octahedral substitution. Further, the field dependence ofχac(T) follows the weak anisotropic GT-line behaviour with crossover exponent Φ lies in the range 1.38-1.52 on theH-Tplane which is in contrast to theB-site Ti substituted MnCo2O4spinel that appears to follow irreversible non-mean-field AT-line behaviour (Φ âˆ¼ 3 +δ). Finally, the Arrott plots analysis indicates the presence of a pseudo first-order like transition (T< 20 K) which is in consonance with and zero crossover of the magnetic entropy change within the frozen spin-glass regime.

8.
J Phys Condens Matter ; 36(31)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653255

RESUMO

We report the experimental determination of the magnetic exchange parameter (J/kB= 2.88 ± 0.02 K) for the Spin-3/2 ferromagnetic (FM) Kagomé lattice system: Co3V2O8using the temperature dependence of dc-magnetic susceptibilityχ(T) data by employing the fundamental Heisenberg linear chain model. Our results are quite consistent with the theoretically reported nearest neighbor dominant FM exchange coupling strengthJex-NN∼2.45 K. Five different magnetic phase transitions (6.2-11.2 K) and spin-flip transitions (9.6-7.7 kOe) have been probed using the∂(χT)/∂Tvs.T, heat capacity (CP-T) and differential isothermal magnetization curves. Among such sequence of transitions, the prominent ones being incommensurate antiferromagnetic (AFM) state at 11.2 K, commensurate AFM state at 8.8 K, and commensurate FM state across 6.2 K. All the successive magnetic phase transitions have been mapped onto a single H-T plane through which one can easily distinguish the above-mentioned different phases. The magnetic contribution of theCP-TnearTN(11.2 K) has been analyzed using the power-law expressionCM=A|T-TN|-αresulting in the critical exponentα= 0.18 ± 0.01 (0.15 ± 0.003) forTTN), respectively for the Co3V2O8. It is interesting to note that non-Debye type dipole relaxation is quite prominent in Co3V2O8and was evident from the Kohlrausch-Williams-Watts analysis of complex modulus and impedance spectra (0⩽ß⩽1). Mott's variable-range hopping of charge carriers process is evident through the resistivity analysis (ρac-T-1/4) in the temperature range 275 ∘C-350 ∘C. Moreover, the frequency-dependent analysis ofσac(ω) follows Jonscher's power law yielding two distinct activation energies (Ea∼0.37 and 2.29 eV) between the temperature range 39 ∘C-99 ∘C and 240 ∘C-321 ∘C.

9.
J Phys Condens Matter ; 36(7)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883993

RESUMO

We report on the reentrant canonical semi spin-glass characteristics and controllable field-induced transitions in distorted Kagomé symmetry of (GeMn)Co2O4. ThisB-site spinel exhibits complicated, yet interesting magnetic behaviour in which the longitudinal ferrimagnetic (FiM) order sets in below the Néel temperatureTFN∼ 77 K due to uneven moments of divalent Co (↑ 5.33µB) and tetravalent Mn (↓ 3.87µB) which coexists with transverse spin-glass state below 72.85 K. Such complicated magnetic behaviour is suggested to result from the competing anisotropic superexchange interactions (JAB/kB∼ 4.3 K,JAA/kB∼ -6.2 K andJBB/kB∼ -3.3 K) between the cations, which is extracted following the Néel's expression for the two-sublattice model of FiM. Dynamical susceptibility (χac(f, T)) and relaxation of thermoremanent magnetization,MTRM(t) data have been analysed by means of the empirical scaling-laws such as Vogel-Fulcher law and Power law of critical slowing down. Both of which reveal the reentrant spin-glass like character which evolves through a number of intermediate metastable states. The magnitude of Mydosh parameter (Ω âˆ¼ 0.002), critical exponentzυ= (6.7 ± 0.07), spin relaxation timeτ0= (2.33 ± 0.1) × 10-18s, activation energyEa/kB= (69.8 ± 0.95) K and interparticle interaction strength (T0= 71.6 K) provide the experimental evidences for canonical spin-glass state below the spin freezing temperatureTF= 72.85 K. The field dependence ofTFobtained fromχac(T) follows the irreversibility in terms of de Almeida-Thouless mean-field instability in which the magnitude of crossover scaling exponent Φ turns out to be ∼2.9 for the (Ge0.8Mn0.2)Co2O4. Isothermal magnetization plots reveal two field-induced transitions across 9.52 kOe (HSF1) and 45.6 kOe (HSF2) associated with the FiM domains and spin-flip transition, respectively. Analysis of the inverse paramagnetic susceptibilityχp-1χp=χ-χ0after subtracting the temperature independent diamagnetic termχ0(=-3 × 10-3emu mol-1Oe-1) results in the effective magnetic momentµeff= 7.654µB/f.u. This agrees well with the theoretically obtainedµeff= 7.58µB/f.u. resulting the cation distributionMn0.24+↓A[Co22+↑]BO4in support of the Hund's ground state spin configurationS=3/2andS= 1/2of Mn4+and Co2+, respectively. TheH-Tphase diagram has been established by analysing all the parameters (TF(H),TFN(H),HSF1(T) andHSF2(T)) extracted from various magnetization measurements. This diagram enables clear differentiation among the different phases of the (GeMn)Co2O4and also illustrates the demarcation between short-range and long-range ordered regions.

10.
Gene ; 854: 147115, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36526121

RESUMO

Finger millet (Eleusine coracana L.) is climate resilient minor millet of Asia and Africa with wide adaptation and unparallel nutritional profile. To date, genomic resources available in finger millet are scanty and genetic control of agronomic traits remains elusive. Here, a collection of eco-geographically diverse 186 genotypes was quantified for variation in 13 agronomic traits and reaction to blast to identify marker-trait associations (MTAs) using genotyping-by-sequencing (GBS) and genome-wide association study (GWAS). GBS generated 2977 high quality single nucleotide polymorphism (SNPs) markers and identified three subpopulations with varying admixture levels. General linear and mixed model approaches of GWAS to correct for population structure and genetic relatedness identified 132 common MTAs for agronomic traits across the years. The phenotypic variance explained by the makers varied from 4.8% (TP692389-flag leaf width) to 20% (TP714446-green fodder weight). Of these, 26 MTAs showed homology with candidate genes having role in plant growth, development and photosynthesis in the genomes of foxtail millet, rice, maize, wheat and barley. We also found 4 common MTAs for neck blast resistance, which explained 5.9-15.1% phenotypic variance. Three MTAs for neck blast resistance showed orthologues in related genera having putative functions in pathogen defense in plants. The results of this work lay a foundation for understanding the genetic architecture of agronomic traits and blast resistance in finger millet and provide a framework for genomics assisted breeding.


Assuntos
Eleusine , Estudo de Associação Genômica Ampla , Eleusine/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA