Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell ; 35(6): 1984-2005, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36869652

RESUMO

Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Escuridão , Amigos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 234(5): 1614-1628, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288949

RESUMO

Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.


Assuntos
Brassicaceae , Ecossistema , Mudança Climática , Humanos , Metabolômica , Plantas , Especificidade da Espécie
3.
PLoS Genet ; 15(4): e1007847, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998684

RESUMO

The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an "auto-immune" type interaction.


Assuntos
Arabidopsis/embriologia , Arabidopsis/fisiologia , Desenvolvimento Embrionário , Desenvolvimento Vegetal , Transdução de Sinais , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário/genética , Endosperma/embriologia , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Sementes/genética , Estresse Fisiológico/genética , Transgenes
4.
Plant J ; 103(2): 660-676, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246506

RESUMO

Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.


Assuntos
Ácidos Graxos/biossíntese , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Plantas Geneticamente Modificadas
5.
Plant Physiol ; 184(1): 82-96, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669420

RESUMO

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Especificidade por Substrato , Nicotiana/genética , Nicotiana/metabolismo
6.
Plant Physiol ; 179(2): 415-432, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514726

RESUMO

Plant aerial organs are coated with cuticular waxes, a hydrophobic layer that primarily serves as a waterproofing barrier. Cuticular wax is a mixture of aliphatic very-long-chain molecules, ranging from 22 to 48 carbons, produced in the endoplasmic reticulum of epidermal cells. Among all wax components, alkanes represent up to 80% of total wax in Arabidopsis (Arabidopsis thaliana) leaves. Odd-numbered alkanes and their derivatives are produced through the alkane-forming pathway. Although the chemical reactions of this pathway have been well described, the enzymatic mechanisms catalyzing these reactions remain unclear. We previously showed that a complex made of Arabidopsis ECERIFERUM1 (CER1) and CER3 catalyzes the conversion of acyl-Coenzyme A's to alkanes with strict substrate specificity for compounds containing more than 29 carbons. To learn more about alkane biosynthesis in Arabidopsis, we characterized the biochemical specificity and physiological functions of a CER1 homolog, CER1-LIKE1. In a yeast strain engineered to produce very-long-chain fatty acids, CER1-LIKE1 interacted with CER3 and cytochrome B5 to form a functional complex leading to the production of alkanes that are of different chain lengths compared to that produced by CER1-containing complexes. Gene expression analysis showed that both CER1 and CER1-LIKE1 are differentially expressed in an organ- and tissue-specific manner. Moreover, the inactivation or overexpression of CER1-LIKE1 in Arabidopsis transgenic lines specifically impacted alkane biosynthesis and wax crystallization. Collectively, our study reports on the identification of a further plant alkane synthesis enzymatic component and supports a model in which several alkane-forming complexes with distinct chain-length specificities coexist in plants.


Assuntos
Alcanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Nicotiana/genética , Ceras/química , Ceras/metabolismo
7.
J Exp Bot ; 69(6): 1287-1299, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29140451

RESUMO

Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce. This review expands on studies in plants with examples from other organisms to present and discuss our current understanding of lipids in membrane dynamics associated with the autophagy pathway in plants.


Assuntos
Autofagia/fisiologia , Membrana Celular/fisiologia , Lipídeos de Membrana/metabolismo , Fenômenos Fisiológicos Vegetais
8.
Plant Physiol ; 171(3): 1934-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231100

RESUMO

Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots.


Assuntos
Arabidopsis/metabolismo , Ácidos Cumáricos/metabolismo , Álcoois Graxos/metabolismo , Raízes de Plantas/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Cumáricos/química , Álcoois Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos/química , Lipídeos/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/química , Plantas Geneticamente Modificadas , Ceras/metabolismo
9.
Plant Physiol ; 171(2): 894-913, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208295

RESUMO

The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipídeos de Membrana/metabolismo , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Frutas/anatomia & histologia , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Glicerol-3-Fosfato O-Aciltransferase/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Modelos Moleculares , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/anatomia & histologia , Pólen/enzimologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de RNA
10.
Plant Cell Environ ; 40(9): 1761-1776, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28477442

RESUMO

The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a ß-ketoacyl-CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl-CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss-of-function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl-CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra-long compounds in adjacent pavement cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Folhas de Planta/metabolismo , Tricomas/metabolismo , Acilação , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Vias Biossintéticas , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional/genética , Folhas de Planta/ultraestrutura , Caules de Planta/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Tricomas/ultraestrutura , Ceras/metabolismo
11.
Subcell Biochem ; 86: 287-313, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023240

RESUMO

The epidermis has a strategic position at the interface between the plant and the environment. In order to control exchanges with the environment as well as to protect the plant from external threats, the epidermis synthesises and secretes surface lipids to form a continuous, transparent and hydrophobic layer known as the cuticle. Cuticle formation is a strictly epidermal property in plants and all aerial epidermal cells produce some sort of cuticle on their surface. Conversely, all cuticularized plant surfaces are of epidermal origin. This seemingly anodyne observation has surprisingly profound implications in terms of understanding the function of the plant cuticle, since it underlies in part, the difficultly of functionally separating epidermal cell fate specification from cuticle biogenesis.


Assuntos
Metabolismo dos Lipídeos , Plantas/metabolismo , Linhagem da Célula , Regulação da Expressão Gênica , Mutação , Desenvolvimento Vegetal , Plantas/genética , Transcrição Gênica
12.
Plant Physiol ; 167(3): 682-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596184

RESUMO

The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica , Especificidade de Órgãos/genética , Fenótipo , Epiderme Vegetal/metabolismo , Infertilidade das Plantas , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reprodução/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ceras/metabolismo
13.
Physiol Plant ; 156(3): 338-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26456072

RESUMO

Some ß-1,3-glucans and particularly sulfated laminarin (PS3) are known as resistance inducers (RIs) in grapevine against the downy mildew. However, their efficacy in vineyard is still often too low, which might be caused by a limited penetration through the leaf cuticle following spray application. We used (14) C-sucrose uptake experiments with grapevine leaves in order to select a surfactant as saccharide penetration enhancer. Our results showed that although sucrose foliar uptake was low, it was strongly enhanced by Dehscofix CO125 (DE), a highly ethoxylated surfactant. Fluorescent saccharides were then produced and laser scanning microscopy was used to analyze their foliar diffusion pattern in Arabidopsis thaliana and grapevine. Interestingly, sucrose and PS3 were seemingly able to penetrate the leaf cuticle only when formulated with DE. Diffusion could preferentially occur via stomata, anticlinal cell walls and trichomes. In grapevine, PS3 penetration rate was much higher on the stomateous abaxial surface of the leaf than on the adaxial surface. Finally, using DE allowed a higher level of downy mildew control by PS3, which corroborated diffusion observations. Our results have practical consequences for the improvement of treatments with saccharidic inducers on grape. That is, formulation of such RIs plays a critical role for their cuticular diffusion and consequently their efficacy. Also, spray application should preferentially target the abaxial surface of the leaves in order to maximize their penetration.


Assuntos
Resistência à Doença/efeitos dos fármacos , Óxido de Etileno/química , Oomicetos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Polissacarídeos/farmacologia , Tensoativos/farmacologia , Vitis/microbiologia , Radioisótopos de Carbono , Colesterol/metabolismo , Difusão , Dissacarídeos/farmacologia , Fluorescência , Cinética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Polissacarídeos/química , Sacarose/metabolismo , Vitis/efeitos dos fármacos , Ceras/metabolismo
14.
J Biol Chem ; 289(32): 21984-94, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24917677

RESUMO

The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis.


Assuntos
Aciltransferases/metabolismo , Aldeído Oxirredutases/metabolismo , Lipídeos/biossíntese , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Éteres/metabolismo , Fusão Gênica , Genes de Protozoários , Teste de Complementação Genética , Palmitoil Coenzima A/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Tetrahymena thermophila/genética , Nicotiana/genética , Nicotiana/metabolismo
15.
Plant Physiol ; 164(2): 888-906, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24357602

RESUMO

The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.


Assuntos
Alelos , Frutas/fisiologia , Lipase/genética , Lipídeos de Membrana/deficiência , Mutação/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Análise por Conglomerados , Metanossulfonato de Etila , Frutas/enzimologia , Frutas/genética , Estudos de Associação Genética , Loci Gênicos , Lipase/química , Lipídeos/biossíntese , Solanum lycopersicum/genética , Modelos Biológicos , Dados de Sequência Molecular , Epiderme Vegetal/metabolismo , Ceras/metabolismo
16.
Plant Cell ; 24(12): 5007-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243127

RESUMO

Acyl lipids are essential constituents of all cells, but acyl chain requirements vary greatly and depend on the cell type considered. This implies a tight regulation of fatty acid production so that supply fits demand. Isolation of the Arabidopsis thaliana WRINKLED1 (WRI1) transcription factor established the importance of transcriptional regulation for modulating the rate of acyl chain production. Here, we report the isolation of two additional regulators of the fatty acid biosynthetic pathway, WRI3 and WRI4, which are closely related to WRI1 and belong to the APETALA2-ethylene-responsive element binding protein family of transcription factors. These three WRIs define a family of regulators capable of triggering sustained rates of acyl chain synthesis. However, expression patterns of the three WRIs differ markedly. Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol production, the three WRIs are required in floral tissues to provide acyl chains for cutin biosynthesis and prevent adherence of these developing organs and subsequent semisterility. The targets of these WRIs encode enzymes providing precursors (acyl chain and glycerol backbones) for various lipid biosynthetic pathways, but not the subsequent lipid-assembling enzymes. These results provide insights into the developmental regulation of fatty acid production in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
17.
Plant Cell ; 24(7): 3106-18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22773744

RESUMO

In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.


Assuntos
Alcanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromos b5/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcanos/química , Motivos de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases , Citocromos b5/genética , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Oxirredução , Epiderme Vegetal/química , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Plântula/química , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Transgenes
18.
Plant J ; 73(5): 733-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23384041

RESUMO

Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual T-DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Ceras/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Família Multigênica , Mutagênese Insercional , Especificidade de Órgãos , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Especificidade por Substrato , Ceras/química
19.
Plant Physiol ; 163(3): 1118-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019425

RESUMO

Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier.


Assuntos
Arabidopsis/metabolismo , Álcoois Graxos/metabolismo , Lipídeos/análise , Raízes de Plantas/metabolismo , Sementes/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografia Gasosa , Regulação para Baixo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/química , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Ceras/análise , Ceras/química
20.
Proc Natl Acad Sci U S A ; 108(16): 6674-9, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464319

RESUMO

Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plastídeos/genética , Biossíntese de Proteínas/fisiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA