Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667764

RESUMO

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Assuntos
Antineoplásicos , Sobrevivência Celular , Neoplasias Pulmonares , Nicotina , Espécies Reativas de Oxigênio , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Células A549 , Nicotina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Antagonistas Nicotínicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cálcio/metabolismo , Poríferos/química
2.
Biomed Pharmacother ; 177: 117007, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906020

RESUMO

This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed. Following the activation of nAChRs (e.g. by nicotine), cancer cells begin to proliferate and become more resistant to chemotherapy-induced apoptosis. This work shows that the 3-alkylpyridinium salt, APS7, a synthetic analog of a toxin from the marine sponge Haliclona (Rhizoneira) sarai, acts as an nAChR antagonist that inhibits the pro-proliferative and anti-apoptotic effects of nicotine on A549 human lung adenocarcinoma cells. In this study, gelatin-based nanoparticles filled with APS7 (APS7-GNPs) were prepared and their effects on A549 cells were compared with that of free APS7. Both APS7 and APS7-GNPs inhibited Ca2+ influx and increased the efficacy of cisplatin chemotherapy in nicotine-stimulated A549 cells. However, significant benefits from APS7-GNPs were observed - a stronger reduction in the proliferation of A549 lung cancer cells and a much higher selectivity in cytotoxicity towards cancer cells compared with non-tumorigenic lung epithelial BEAS-2B cells.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727371

RESUMO

Nicotine activates nicotinic acetylcholine receptors (nAChRs), which are overexpressed in numerous cancer types, leading to signaling pathways that increase lung cancer invasiveness and resistance to chemotherapeutic agents. In this study, the effects of APS12-2, a synthetic analog of marine sponge toxin that acts as an antagonist of nAChRs, was investigated in vitro on A549 human lung adenocarcinoma cells and non-tumorigenic human lung epithelial BEAS-2B cells. In addition, gelatin nanoparticles (GNPs) loaded with APS12-2 (APS12-2-GNPs) were prepared and their effects were compared with those of free APS12-2. Nicotine reduced cytotoxicity, the formation of reactive oxygen species, and the formation of lipid droplets caused by cisplatin on A549 cells. The effects of nicotine on the decreased efficacy of cisplatin were reduced by APS12-2 and APS12-2-GNPs. APS12-2-GNPs showed a substantial advantage compared with free APS12-2; the cytotoxicity of APS12-2 on BEAS-2B cells was greatly reduced when APS12-2 was loaded in GNPs, whereas the cytotoxicity on A549 cells was only slightly reduced. Our results suggest that both APS12-2 and APS12-2-GNPs hold promise as supportive agents in the cisplatin-based chemotherapy of lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA