Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Med ; 27(1): 152-164, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398162

RESUMO

Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8+ T cells from systemic circulation. Within the liver, activated antigen-specific Fas+CD8+ T cells undergo apoptosis following their interaction with FasL+CD11b+F4/80+ monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8+ T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.


Assuntos
Imunoterapia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Hepáticas Experimentais/terapia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Estudos de Coortes , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/imunologia , Ativação Linfocitária , Masculino , Melanoma/imunologia , Melanoma/secundário , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Radioterapia Adjuvante , Linfócitos T/classificação , Linfócitos T/patologia , Falha de Tratamento , Resultado do Tratamento , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
2.
Medchemcomm ; 9(12): 2000-2007, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647878

RESUMO

Non-B DNA structures represent intriguing and challenging targets for small molecules. For example, the promoter of the HRAS oncogene contains multiple G-quadruplex and i-motif structures, atypical globular folds that serve as molecular switches for gene expression. Of the two, i-motif structures are far less studied. Here, we report the first example of small organic compounds that directly interact with the hras-1Y i-motif. We use a small molecule microarray screen to identify drug-like small molecules that bind to the hras-1Y i-motif but not to several other DNA or RNA secondary structures. Two different lead compounds, 1 and 2, were discovered to have 7.4 ± 5.3 µM and 5.9 ± 3.7 µM binding affinity by surface plasmon resonance and similar affinity by fluorescence titration. A structure-activity relationship (SAR) was developed and two improved analogues of 2 demonstrated submicromolar binding affinities. Both compounds display pH-dependent binding, indicating that they interact with the DNA only when the i-motif is properly folded. Chemical shift perturbation shows that 1 alters the structure of the i-motif, while 2 has no effect on the i-motif conformation, indicating different modes of interaction.

3.
J Med Chem ; 61(14): 6163-6177, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29953808

RESUMO

Cancer cells rely on the chaperone heat shock protein 70 (Hsp70) for survival and proliferation. Recently, benzothiazole rhodacyanines have been shown to bind an allosteric site on Hsp70, interrupting its binding to nucleotide-exchange factors (NEFs) and promoting cell death in breast cancer cell lines. However, proof-of-concept molecules, such as JG-98, have relatively modest potency (EC50 ≈ 0.7-0.4 µM) and are rapidly metabolized in animals. Here, we explored this chemical series through structure- and property-based design of ∼300 analogs, showing that the most potent had >10-fold improved EC50 values (∼0.05 to 0.03 µM) against two breast cancer cells. Biomarkers and whole genome CRISPRi screens confirmed members of the Hsp70 family as cellular targets. On the basis of these results, JG-231 was found to reduce tumor burden in an MDA-MB-231 xenograft model (4 mg/kg, ip). Together, these studies support the hypothesis that Hsp70 may be a promising target for anticancer therapeutics.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Compostos de Piridínio/química , Tiazóis/química , Regulação Alostérica/efeitos dos fármacos , Animais , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/química , Humanos , Células MCF-7 , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
4.
Chem Sci ; 8(11): 7737-7745, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568437

RESUMO

Pyrogallol[4]arene hexamers are hydrogen-bonded molecular capsules of exceptional kinetic stability that can entrap small molecule guests indefinitely, without exchange, at ambient temperatures. Here, we report on the use of a ball mill to induce self-assembly of the capsule components and the guests in the solid state. Stoichiometric amounts of pyrogallol[4]arene and a guest, which can be an arene, alkane, amine, or carboxylic acid, were milled at 30 Hz for fixed durations, dissolved, and characterization by NMR. Most of the resulting encapsulation complexes were kinetically stable but thermodynamically unstable in solution, and the yield of their formation correlates with the duration of the milling and is related to the structures of guest and host. This method extends the scope of molecular encapsulation, as demonstrated by the preparation of kinetically trapped encapsulation complexes of [2.2]paracyclophane, for which we could find no other method of preparation. To gain mechanistic insights into the solid-state assembly process, we characterized the milled powders using 13C CP-MAS NMR, we studied the effects of changing the alkane domain of the host, and we examined how dissolution conditions impact on the distribution of observed encapsulation complexes once in solution. The results support a mechanism comprising mechanically induced solid-state reorganization to produce a mixture rich in nearly or fully assembled guest-filled capsules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA