Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 201(2): 645-656, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117470

RESUMO

Recombination is a major mechanism generating genetic diversity, but the control of the crossover rate remains a key question. In Brassica napus (AACC, 2n = 38), we can increase the homologous recombination between A genomes in AAC hybrids. Hypotheses for this effect include the number of C univalent chromosomes, the ratio between univalents and bivalents and, finally, which of the chromosomes are univalents. To test these hypotheses, we produced AA hybrids with zero, one, three, six or nine additional C chromosomes and four different hybrids carrying 2n = 32 and 2n = 35 chromosomes. The genetic map lengths for each hybrid were established to compare their recombination rates. The rates were 1.4 and 2.7 times higher in the hybrids having C6 or C9 alone than in the control (0C). This enhancement reached 3.1 and 4.1 times in hybrids carrying six and nine C chromosomes, and it was also higher for each pair of hybrids carrying 2n = 32 or 2n = 35 chromosomes, with a dependence on which chromosomes remained as univalents. We have shown, for the first time, that the presence of one chromosome, C9 , affects significantly the recombination rate and reduces crossover interference. This result will have fundamental implications on the regulation of crossover frequency.


Assuntos
Brassica napus/genética , Cromossomos de Plantas/metabolismo , Recombinação Homóloga , Aneuploidia , Pareamento Cromossômico , Hibridização Genética , Hibridização in Situ Fluorescente
2.
Proc Natl Acad Sci U S A ; 104(39): 15572-7, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17878303

RESUMO

In all land plants, cellulose is synthesized from hexameric plasma membrane complexes. Indirect evidence suggests that in vascular plants the complexes involved in primary wall synthesis contain three distinct cellulose synthase catalytic subunits (CESAs). In this study, we show that CESA3 and CESA6 fused to GFP are expressed in the same cells and at the same time in the hypocotyl of etiolated seedlings and migrate with comparable velocities along linear trajectories at the cell surface. We also show that CESA3 and CESA6 can be coimmunoprecipitated from detergent-solubilized extracts, their protein levels decrease in mutants for either CESA3, CESA6, or CESA1 and CESA3, CESA6 and also CESA1 can physically interact in vivo as shown by bimolecular fluorescence complementation. We also demonstrate that CESA6-related CESA5 and CESA2 are partially, but not completely, redundant with CESA6 and most likely compete with CESA6 for the same position in the cellulose synthesis complex. Using promoter-beta-glucuronidase fusions we show that CESA5, CESA6, and CESA2 have distinct overlapping expression patterns in hypocotyl and root corresponding to different stages of cellular development. Together, these data provide evidence for the existence of binding sites for three distinct CESA subunits in primary wall cellulose synthase complexes, with two positions being invariably occupied by CESA1 and CESA3, whereas at least three isoforms compete for the third position. Participation of the latter three isoforms might fine-tune the CESA complexes for the deposition of microfibrils at distinct cellular growth stages.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Celulose/química , Genes de Plantas , Glucosiltransferases/genética , Microfibrilas , Modelos Genéticos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA