Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(15): 4279-4297, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100767

RESUMO

There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1 year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1 year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Humanos , Dióxido de Carbono/análise , Metano/análise , Agricultura , Solo , Gases de Efeito Estufa/análise , Árvores , Indonésia , Nitrogênio , Óxido Nitroso/análise
2.
Glob Chang Biol ; 27(15): 3681-3698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33949752

RESUMO

Drainage and conversion of natural peatlands to forestry increases soil CO2 emissions through decomposition of peat and modifies the quantity and quality of litter inputs and therefore the soil carbon balance. In organic soils, CO2 net emissions and removals are reported using carbon emission factors (EF). The choice of specific default Tier 1 EF values from the IPCC 2013 Wetlands supplement depends on land-use categories and climate zones. However, Tier 1 EF for afforested peatlands in the temperate maritime climate zone are based on data from eight sites, mainly located in the hemiboreal zone, and the uncertainty associated with these default values is a concern. In addition, moving from Tier 1 to higher-Tier carbon reporting values is highly desirable when large areas are affected by land-use changes. In this study, we estimated site-specific soil carbon balance for the development of Tier 2 soil CO2 -C EFs for afforested peatlands. Soil heterotrophic respiration and aboveground tree litterfall were measured during two years at eight afforested peatland sites in Ireland. In addition, fine-root turnover rate and site-specific fine-root biomass were used to quantify belowground litter inputs. We found that drainage of peatlands and planting them with either Sitka spruce or lodgepole pine, resulted in soils being net carbon sources. The soil carbon balance at multi-year sites varied between 63 ± 92 and 309 ± 67 g C m-2  year-1 . Mean CO2 -C EF for afforested peatlands was 1.68 ± 0.33 t CO2 -C ha-1  year-1 . The improved CO2 -C EFs presented here for afforested peatlands are proposed as a basis to update national CO2 -C emissions from this land-use class in Ireland. Furthermore, new data from these sites will significantly contribute to the development of more reliable IPCC default Tier 1 CO2 -C EFs for afforested peatlands in the maritime temperate climate zone.


Assuntos
Carbono , Solo , Carbono/análise , Dióxido de Carbono/análise , Irlanda , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA