RESUMO
PURPOSE: A major mechanism of resistance to temozolomide involves the DNA repair protein O6-alkylguanine-DNA-alkyltransferase (ATase). The main aims of this phase I trial were to determine an ATase-depleting dose (ADD) of lomeguatrib, a potent pseudosubstrate inhibitor, and to define a suitable dose of temozolomide to be used in combination with lomeguatrib in patients with advanced cancer. EXPERIMENTAL DESIGN: Lomeguatrib was administered at dose levels of 10 to 40 mg/m2 days 1 to 5, as a single agent, and also in combination with temozolomide. Once the ADD of lomeguatrib was identified, the dose of temozolomide in combination was increased, in successive patient cohorts, from 50 to 175 mg/m2 on days 1 to 5 of a 28-day cycle to define the maximal tolerated dose and dose-limiting toxicity of the combination. RESULTS: Thirty-eight patients with advanced solid tumors were enrolled. More than 95% ATase depletion within 4 hours of the first dose was achieved in peripheral blood mononuclear cells at lomeguatrib doses of > or =10 mg/m2/d i.v. or > or =20 mg/m2/d orally, and tumor biopsies showed > or =92% ATase depletion. At the ADD of lomeguatrib i.v., the maximal tolerated dose of temozolomide in combination was 150 mg/m2 days 1 to 5. The dose limiting toxicity of the combination of lomeguatrib and temozolomide was myelosuppression. The toxicity of lomeguatrib alone was minimal. In 23 patients with measurable disease, one complete response was seen and 12 patients had stable disease for at least 3 months. CONCLUSION: This first administration of lomeguatrib to man successfully established an oral ADD of lomeguatrib and identified a combination regimen with temozolomide suitable for future clinical evaluation.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Feminino , Guanina/administração & dosagem , Guanina/análogos & derivados , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/enzimologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Segurança , TemozolomidaRESUMO
PURPOSE: To establish the maximum-tolerated dose and evaluate tolerability, pharmacokinetics, pharmacodynamic effects, and antitumor activity of AEG35156, a second-generation antisense to X-linked inhibitor of apoptosis (XIAP) protein, in patients with advanced refractory malignant tumors. PATIENTS AND METHODS: This was a first-in-man, open-label, phase I dose-escalation study. AEG35156 was administered by continuous intravenous infusion over 7 days (7DI) or 3 days (3DI) of a 21-day treatment cycle. Dose escalation started at 48 mg/m(2)/d and continued until consistent dose-limiting toxicity (DLT) was observed. RESULTS: Thirty-eight patients were entered in seven cohorts. Grade 3 to 4 adverse events were uncommon and were predominantly abnormal laboratory values: elevated ALT, thrombocytopenia, and lymphopenia. DLTs comprised elevated hepatic enzymes, hypophosphatemia, and thrombocytopenia. The maximum-tolerated doses were defined as 125 mg/m(2)/d for the 7DI regimen and < or = 213 mg/m(2)/d for the 3DI schedule. AEG35156 area under the plasma concentration curve and peak plasma concentration increased proportionally with dose. Suppression of XIAP mRNA levels was maximal at 72 hours (mean suppression, 21%), and this coincided with a dramatic decrease in circulating tumor cells in a patient with non-Hodgkin's lymphoma. Two further patients had unconfirmed partial responses. Circulating biomarkers of cell death and apoptosis altered in association with drug infusion and toxicity. CONCLUSION: In this first-in-man study, AEG35156 was well tolerated, with predictable toxicities, pharmacokinetic properties, and clinical evidence of antitumor activity in patients with refractory lymphoma, melanoma, and breast cancer. Phase I/II trials of AEG35156 chemotherapy combinations are ongoing in patients with pancreatic, breast, non-small-cell lung cancer, acute myeloid leukemia, lymphoma, and solid tumors for which docetaxel is indicated.