Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861884

RESUMO

The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.


Assuntos
Cinesinas , Células de Purkinje , Animais , Camundongos , Cinesinas/genética , Proteômica , Transporte Biológico , Lisossomos , Camundongos Knockout
2.
Environ Sci Technol ; 48(1): 641-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24364419

RESUMO

The hydroxyl radical ((•)OH) is one of the main oxidative species in aqueous phase advanced oxidation processes, and its initial reactions with organic pollutants are important to understand the transformation and fate of organics in water environments. Insights into the kinetics and mechanism of (•)OH mediated degradation of the model environmental endocrine disruptor, dimethyl phthalate (DMP), have been obtained using radiolysis experiments and computational methods. The bimolecular rate constant for the (•)OH reaction with DMP was determined to be (3.2 ± 0.1) × 10(9) M(-1)s(-1). The possible reaction mechanisms of radical adduct formation (RAF), hydrogen atom transfer (HAT), and single electron transfer (SET) were considered. By comparing the experimental absorption spectra with the computational results, it was concluded that the RAF and HAT were the dominant reaction pathways, and OH-adducts ((•)DMPOH1, (•)DMPOH2) and methyl type radicals (•)DMP(-H)α were identified as dominated intermediates. Computational results confirmed the identification of transient species with maximum absorption around 260 nm as (•)DMPOH1 and (•)DMP(-H)α, and these radical intermediates then converted to monohydroxylated dimethyl phthalates and monomethyl phthalates. Experimental and computational analyses which elucidated the mechanism of (•)OH-mediated degradation of DMP are discussed in detail.


Assuntos
Radical Hidroxila/química , Ácidos Ftálicos/química , Transporte de Elétrons , Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Oxirredução , Teoria Quântica , Soluções , Água
3.
J Immunol ; 188(12): 5819-23, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611242

RESUMO

T cells use the αß TCR to bind peptides presented by MHC proteins (pMHC) on APCs. Formation of a TCR-pMHC complex initiates T cell signaling via a poorly understood process, potentially involving changes in oligomeric state, altered interactions with CD3 subunits, and mechanical stress. These mechanisms could be facilitated by binding-induced changes in the TCR, but the nature and extent of any such alterations are unclear. Using hydrogen/deuterium exchange, we demonstrate that ligation globally rigidifies the TCR, which via entropic and packing effects will promote associations with neighboring proteins and enhance the stability of existing complexes. TCR regions implicated in lateral associations and signaling are particularly affected. Computational modeling demonstrated a high degree of dynamic coupling between the TCR constant and variable domains that is dampened upon ligation. These results raise the possibility that TCR triggering could involve a dynamically driven, allosteric mechanism.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Biologia Computacional , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Estrutura Quaternária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Linfócitos T/química , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/imunologia
4.
PLoS Negl Trop Dis ; 8(1): e2646, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24421916

RESUMO

We have identified LmaPA2G4, a homolog of the human proliferation-associated 2G4 protein (also termed Ebp1), in a phosphoproteomic screening. Multiple sequence alignment and cluster analysis revealed that LmaPA2G4 is a non-peptidase member of the M24 family of metallopeptidases. This pseudoenzyme is structurally related to methionine aminopeptidases. A null mutant system based on negative selection allowed us to demonstrate that LmaPA2G4 is an essential gene in Leishmania major. Over-expression of LmaPA2G4 did not alter cell morphology or the ability to differentiate into metacyclic and amastigote stages. Interestingly, the over-expression affected cell proliferation and virulence in mouse footpad analysis. LmaPA2G4 binds a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I∶C)] as shown in an electrophoretic mobility shift assay (EMSA). Quantitative proteomics revealed that the over-expression of LmaPA2G4 led to accumulation of factors involved in translation initiation and elongation. Significantly, we found a strong reduction of de novo protein biosynthesis in transgenic parasites using a non-radioactive metabolic labeling assay. In conclusion, LmaPA2G4 is an essential gene and is potentially implicated in fundamental biological mechanisms, such as translation, making it an attractive target for therapeutic intervention.


Assuntos
Proliferação de Células , Genes Essenciais , Leishmania major/genética , Proteínas de Protozoários/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Mol Biol Cell ; 22(18): 3318-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21775627

RESUMO

Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.


Assuntos
Dineínas do Citoplasma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Benzamidas/farmacologia , Complexo Dinactina , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pontos de Checagem da Fase M do Ciclo Celular , Metáfase , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinazolinas/farmacologia , Ratos , Análise de Célula Única , Imagem com Lapso de Tempo
6.
J Mol Biol ; 395(5): 1049-62, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19913027

RESUMO

Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other +TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of alpha-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both alpha-tubulin and beta-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both alpha-tubulin and beta-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the +TIP network.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Reagentes de Ligações Cruzadas , Técnicas In Vitro , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Subtilisina/metabolismo , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
J Biol Chem ; 281(14): 9205-9, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16464863

RESUMO

We previously reported (Sarfare, S., Ahmad, S. T., Joyce, M. V., Boggess, B., and O'Tousa, J. E. (2005) J. Biol. Chem. 280, 11895-11901) that the Drosophila ninaG gene encodes an oxidoreductase involved in the biosynthesis of the (3S)-3-hydroxyretinal serving as chromophore for Rh1 rhodopsin and that ninaG mutant flies expressing Rh4 as the major opsin accumulate large amounts of a different retinoid. Here, we show that this unknown retinoid is 11-cis-3-hydroxyretinol. Reversed phase high performance liquid chromatography coupled with a photodiode array UV-visible absorbance detector and mass spectrometer revealed a major product eluting at a retention time, t(r), of 3.5 min with a lambda(max) of approximately 324 nm and with a base peak in the mass spectrum at m/z 285. These observations are identical with those of the 3-hydroxyretinol standard. The base peak in the electrospray ionization mass spectrum arises from the loss of a water molecule from the protonated molecule at m/z 303 because of fragmentation in the ion source. These results suggest that 11-cis-3-hydroxyretinol is an intermediate required for chromophore biogenesis in Drosophila. We further show that ninaG mutants fed on retinal as the sole source of vitamin A are able to synthesize 3-hydroxyretinoids. Thus, the NinaG oxidoreductase is not responsible for the initial hydroxylation of the retinal ring but rather acts in a subsequent step in chromophore production. These data are used to review chromophore biosynthesis and propose that NinaG acts in the conversion of (3R)-3-hydroxyretinol to the 3S enantiomer.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Oxirredutases/fisiologia , Retinaldeído/análogos & derivados , Vitamina A/análogos & derivados , Animais , Proteínas de Drosophila/genética , Hidroxilação , Isomerismo , Oxirredutases/genética , Oxirredutases/metabolismo , Retinaldeído/biossíntese , Retinaldeído/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Vitamina A/metabolismo
8.
J Biol Chem ; 280(12): 11895-901, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15640158

RESUMO

The Drosophila ninaG mutant is characterized by low levels of Rh1 rhodopsin, because of the inability to transport this rhodopsin from the endoplasmic reticulum to the rhabdomere. ninaG mutants do not affect the biogenesis of the minor opsins Rh4 and Rh6. A genetic analysis placed the ninaG gene within the 86E4-86E6 chromosomal region. A sequence analysis of the 15 open reading frames within this region from the ninaG(P330) mutant allele identified a stop codon in the CG6728 gene. Germ-line transformation of the CG6728 genomic region rescued the ninaG mutant phenotypes, confirming that CG6728 corresponds to the ninaG gene. The NinaG protein belongs to the glucose-methanol-choline oxidoreductase family of flavin adenine dinucleotide-binding enzymes catalyzing hydroxylation and oxidation of a variety of small organic molecules. High performance liquid chromatography analysis of retinoids was used to gain insight into the in vivo role of the NinaG oxidoreductase. The results show that when Rh1 is expressed as the major rhodopsin, ninaG flies fail to accumulate 3-hydroxyretinal. Further, in transgenic flies expressing Rh4 as the major rhodopsin, 3-hydroxyretinal is the major retinoid in ninaG+, but a different retinoid profile is observed in ninaG(P330). These results indicate that the ninaG oxidoreductase acts in the biochemical pathway responsible for conversion of retinal to the rhodopsin chromophore, 3-hydroxyretinal.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Retinaldeído/análogos & derivados , Rodopsina/biossíntese , Animais , Cromatografia Líquida de Alta Pressão , Proteínas de Drosophila/genética , Fenótipo , Retina/enzimologia , Retinaldeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA