Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 41: 183-194, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969064

RESUMO

The geochemistry of natural waters in the Changtang Nature Reserve, northern Tibet, can help us understand the geology of catchments, and provide additional insight in surface processes that influence water chemistry such as rock weathering on the Qinghai-Tibet Plateau. However, severe natural conditions are responsible for a lack of scientific data for this area. This study represents the first investigation of the chemical composition of surface waters and weathering effects in two lake basins in the reserve (Lake Dogaicoring Qiangco and Lake Longwei Co). The results indicate that total dissolved solids (TDS) in the two lakes are significantly higher than in other gauged lakes on the Qinghai-Tibet Plateau, reaching 20-40g/L, and that TDS of the tectonic lake (Lake Dogaicoring Qiangco) is significantly higher than that of the barrier lake (Lake Longwei Co). Na(+) and Cl(-) are the dominant ions in the lake waters as well as in the glacier-fed lake inflows, with chemical compositions mainly affected by halite weathering. In contrast, ion contents of inflowing rivers fed by nearby runoff are lower and concentrations of dominant ions are not significant. Evaporite, silicate, and carbonate weathering has relatively equal effects on these rivers. Due to their limited scope, small streams near the lakes are less affected by carbonate than by silicate weathering.


Assuntos
Monitoramento Ambiental , Lagos/química , Rios/química , Carbonatos/análise , Silicatos/análise , Tibet , Tempo (Meteorologia)
2.
Sci Total Environ ; 947: 174682, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002583

RESUMO

The Tibetan Plateau (TP) has the world's largest distribution of high-alpine and saline (generally hardwater) lakes, which are expected to affect regional carbon cycling profoundly. However, the variability, and especially underlying factors controlling CO2 dynamics, across widespread hardwater lakes is poorly understood on the TP. Here, we present year-round records of surface water pCO2 from a representative hardwater lake (Nam Co) on the TP, and analyze relationships between ambient variables and pCO2 during open water (i.e., ice-free) and ice-covered months. Surface pCO2 (233.3 µatm on average) was a little oversaturated to atmosphere (219 µatm on average) during the open water season. As a CO2 source, Nam Co emitted 8.73 ± 1.06 Gg C annually, but this flux only accounted for 0.53 ± 0.06 ‰ of its total dissolved inorganic carbon pool (1.64 × 1013 g C). Regression results indicate that, during open water months, both seasonal and diurnal varying patterns of surface pCO2 were influenced predominantly by water temperature, in a quasi-marine mode, by controlling gas solubility and dissolved carbonate equilibria. Therefore, CO2 evasion was elevated during summer months, despite the lake being autotrophic (i.e., CO2 consumption via photosynthesis). By contrast, during ice-covered months the surface pCO2 was strongly related to under-ice thermodynamics, and declined nonlinear with increased inversed stratification. In the hypolimnion, as a result of extremely weak metabolism (as indicated by low dissolved oxygen depletion rates) and a combined high carbonate buffering effect, accumulation of CO2 was negligible, leading to an absence of peak effluxes of CO2 during turnover periods, compared to eutrophic freshwater lakes. We argue that, under future global warming scenarios, consideration of the impact of gradually warming lake water on thermodynamics and dissolved carbonate equilibria are vital in order to understand the future CO2 dynamics of these widespread high-altitude oligotrophic-hardwater lakes situated across the TP.

3.
Sci Total Environ ; 943: 173741, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857808

RESUMO

The Tibetan Plateau (TP) is one of the most challenging areas for human long-term settlement due to its extreme living environment. Understanding the relationship between human activities and environmental changes in this extreme environment is important and can provide a historical reference for adapting to future climate change. In this study, we took the Angren Basin in the southern TP as a case study to elucidate the relationship since Little Ice Age (LIA). Using fecal stanol in feces, lake and river surface sediments, surface soils, and sediment core, we found that specific indices S1 and S2 from the composition of coprostanol, epicoprostanol, 5ß-ethylcoprostanol and 5ß-ethylepicoprostanol can reflect changes in human population and herbivores, respectively. Through the comparison between environmental changes determined by grain size, elements, sedimentation rate, and other climate records, the relationship between human activities and environmental changes was interpreted. Our results indicate that: (i) during 1480-1820 CE, the fecal stanols in lake sediments mainly originated from livestock, and the human population was low. In contrast, during 1820-2021 CE, the proportion and flux of S1 have been continuously increasing, indicating significant population growth. (ii) During the middle LIA, the cold-dry climate inhibited the development of agriculture and farming. However, the increased precipitation during the late LIA promoted that development, resulting in an increase in human population and livestock in a short term. (iii) Since 1951, people have reclaimed wasteland and developed husbandry, leading to increased soil erosion. (iv) Over the past 40 years, with a warm-humid climate and good policy support, human activities, such as agriculture and husbandry, have rapidly increased, but soil erosion has declined in the recent 20 years due to good soil-water conservation efforts. This study sheds light on the relationship between human activities and environmental changes and provides insights into future climate change responses.


Assuntos
Mudança Climática , Monitoramento Ambiental , Atividades Humanas , Tibet , Humanos , Lagos/química , Sedimentos Geológicos/química , Fezes/química , Solo/química
4.
PNAS Nexus ; 1(3): pgac053, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741461

RESUMO

Third Pole natural cascade alpine lakes (NCALs) are exceptionally sensitive to climate change, yet the underlying cryosphere-hydrological processes and associated societal impacts are largely unknown. Here, with a state-of-the-art cryosphere-hydrology-lake-dam model, we quantified the notable high-mountain Hoh-Xil NCALs basin (including Lakes Zonag, Kusai, Hedin Noel, and Yanhu, from upstream to downstream) formed by the Lake Zonag outburst in September 2011. We demonstrate that long-term increased precipitation and accelerated ice and snow melting as well as short-term heavy precipitation and earthquake events were responsible for the Lake Zonag outburst; while the permafrost degradation only had a marginal impact on the lake inflows but was crucial to lakeshore stability. The quadrupling of the Lake Yanhu area since 2012 was due to the tripling of inflows (from 0.25 to 0.76 km3/year for 1999 to 2010 and 2012 to 2018, respectively). Prediction of the NCALs changes suggests a high risk of the downstream Qinghai-Tibet Railway, necessitating timely adaptions/mitigations.

5.
Sci Total Environ ; 708: 135370, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812427

RESUMO

Understanding long-term environmental changes under natural and anthropic forces is helpful for facilitating sustainable development. Here we present a sedimentary record from the central Tibetan Plateau to investigate the impacts of climate and human activities on alpine vegetation during the late Holocene, based on a 162-cm-long lacustrine sediment core collected from Tangra Yumco. Palynology, charcoal and minerogenic input reveal variations of climate and human activity during the past 3400 cal yr BP. Our results show that alpine steppe dominated by Artemisia, Cyperaceae and Poaceae was present in the Tangra Yumco area during the entire covered period. Only minor human activities are visible between 3400 and 2300 as well as from 1700 to 400 cal yr BP, when vegetation was mainly influenced by climate. Although human activities (presence/grazing) became more intensive between 2300 and 1700 cal yr BP corresponding to the Zhang Zhung Kingdom, vegetation change is still mainly affected by a more arid climate. Strongest human influence on vegetation was found after 400 cal yr BP, when vegetation composition was altered by farming and grazing activities. Our records indicate human activities did not have significant impacts on alpine environment until the past few centuries at Tangra Yumco on the central Tibetan Plateau.

6.
Sci Total Environ ; 651(Pt 2): 2059-2067, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321727

RESUMO

Climate change-induced glacial melting is a global phenomenon. The effects of climate change-induced melting on the microbial ecology in different glacial-fed aquatic systems have been well illuminated, but the resolution of seasonal dynamics was still limited. Here, we studied bacterial community composition and diversity in a glacial-fed Tibetan lake, Lake Ranwu, to elucidate how glacial-fed aquatic ecosystems respond to the seasonal glacial melting. Obvious seasonal variations of bacterial dominant groups were found in Lake Ranwu and inlet rivers. In April, the majority of OTUs belonged to the Bacteroidetes, Actinobacteria and Proteobacteria. The Proteobacteria increased to the most abundant phylum in July and November, while the Bacteroidetes and Actinobacteria decreased about 50% over seasons. Most key discriminant taxa of each season's community strongly associated with specific environmental variables, suggesting their adaptation to seasonal environments. Bacterial alpha diversity varied among seasons and exhibited strongly negative correlations with conductivity. Conductivity was the major driving force in determining the seasonal variation of bacterial community composition. Fluctuated conductivity was one of the consequences of seasonal melting of glaciers. This study offered evidence for the unique seasonal dynamics pattern of bacterial communities responding to glacial melting. Moreover, this study may provide a reference for assessing the long-term effects of glacial retreat on glacial-fed aquatic ecosystems.


Assuntos
Bactérias/isolamento & purificação , Aquecimento Global , Lagos/microbiologia , Microbiota , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Bactérias/classificação , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Mudança Climática , Camada de Gelo , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Estações do Ano , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA