RESUMO
Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.
Assuntos
Relação Quantitativa Estrutura-Atividade , Humanos , Albumina Sérica Humana/química , Algoritmos , Modelos Lineares , Estrutura Molecular , Fosfolipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Cromatografia/métodosRESUMO
In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.
RESUMO
Manufactured nanomaterials (NMs) are increasingly used in a wide range of industrial applications leading to a constant increase in the market size of nano-enabled products. The increased production and use of NMs are raising concerns among different stakeholder groups with regard to their effects on human and environmental health. Currently, nanosafety hazard assessment is still widely performed using in vivo (animal) models, however the development of robust and regulatory relevant strategies is required to prioritize and/or reduce animal testing. An adverse outcome pathway (AOP) is a structured representation of biological events that start from a molecular initiating event (MIE) leading to an adverse outcome (AO) through a series of key events (KEs). The AOP framework offers great advancement to risk assessment and regulatory safety assessments. While AOPs for chemicals have been more frequently reported, the AOP collection for NMs is limited. By using existing AOPs, we aimed to generate simple and testable strategies to predict if a given NM has the potential to induce a MIE leading to an AO through a series of KEs. Firstly, we identified potential MIEs or initial KEs reported for NMs in the literature. Then, we searched the identified MIE or initial KEs as keywords in the AOP-Wiki to find associated AOPs. Finally, using two case studies, we demonstrate how in vitro strategies can be used to test the identified MIE/KEs.