Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 30(48): 14476-85, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25390823

RESUMO

The interactions between mineral surfaces and organic molecules in water control many processes in nature and in the production of modern materials. To improve the understanding of fluid-surface interactions, we investigated the interface behavior of quartz and muscovite, a model for clay minerals, in aqueous solutions where the pH and composition were controlled. We used atomic force microscopy (AFM) in chemical force mapping (CFM) mode to measure adhesion using tips functionalized with alkyl, -CH3. By combining adhesion forces measured as a function of pH, with data from streaming potential experiments and DLVO calculations, we were able to determine the surface charge density. We observed increased adhesion between the mineral surface and the hydrophobic tips as the contact time increased from 7 ms to ∼2 s. The diffusion of dissolved ions takes time, and density functional theory (DFT) calculations did not indicate a strong hydration of the mineral surfaces. Therefore, we interpret that the loss of ions from the confined space between the tip and sample is a likely explanation of the correlation between the dwell time and adhesion. The maximum adhesion increase with dwell time for muscovite, i.e., 400 ± 77 pN, was considerably larger than for quartz, 84 ± 15 pN, which fits with the different surface structure and composition of the two minerals. We propose two mechanisms to explain these results: (1) cations that are structured in the solution and on the surface remain associated at the tip-sample interface initially but diffuse away during extended contact time and (2) adventitious carbon, the organic material that comes spontaneously from air and solution, can diffuse to the tip-sample interface during contact. This material decreases the surface energy by aggregating near the alkyl tip and increases adhesion between the tip and sample.

2.
Langmuir ; 30(29): 8741-50, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24988276

RESUMO

We investigated the adhesion of two functional groups to α-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil, oil recovery, and fabricating complicated nanomaterials, and there have been claims that organic compound-clay mineral interaction created the ordering that is necessary for the genesis of life. In many organisms, interaction between organic molecules and biominerals makes it possible to control the growth of bones, teeth, and shells. Adhesion of carboxylic acid, -COO(H), and pyridine, -C5H5N(H(+)), on the {0001} plane of α-alumina wafers has been investigated with atomic force microscopy (AFM) in chemical force mapping (CFM) mode. Both functional groups adhered to α-alumina in deionized water at pH < 5, and adhesion decreased as NaCl or CaCl2 concentration increased. X-ray photoelectron spectroscopy (XPS) showed that Na(+) and Ca(2+) adsorbed to the α-alumina surface at pH < 5, decreasing surface interaction with the carboxylic acid and pyridine groups. We interpret the results as evidence that the tips adhere to alumina through hydrogen bonding when only water is present. In solutions containing NaCl and CaCl2, cations are adsorbed but Cl(-) is not. When NaCl solutions are replaced by CaCl2, Ca(2+) replaces Na(+), but rinsing with ultrapure deionized water (pH 5.6) could not restore the original protonated surface. The results demonstrate that the alumina surface at pH 3 has a higher affinity for inorganic cations than for -COO(H) or -C5H5N(H(+)), in spite of the known positive surface charge of α-alumina {0001} wafers. These results demonstrate that solution salinity plays an important role in surface properties, controlling surface tension (i.e., contact angle) and adsorption affinity on α-alumina and, by analogy, on clay minerals.


Assuntos
Óxido de Alumínio/química , Cloreto de Cálcio/química , Ácidos Carboxílicos/química , Piridinas/química , Cloreto de Sódio/química , Água/química , Adsorção , Silicatos de Alumínio/química , Argila , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Salinidade , Tensão Superficial , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA