Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(2): 506-509, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638496

RESUMO

High repetition rate femtosecond filaments in transparent solids produce conical third harmonic generation due to filament-induced material reorganization in the form of periodic volume nanogratings. Here we report on conical third harmonic generation that accompanies supercontinuum generation in fused silica using broadly tunable femtosecond pulses. The measurement of third harmonic cone angles with driving wavelengths in the 1-3-µm range fully supports the noncollinear phase-matching scenario that involves a reciprocal lattice vector of the filament-inscribed nanograting. The nanograting provides an octave-spanning phase-matching bandwidth, as attested by the measurements of the angle-resolved spectra of broadband conical third harmonic emission.

2.
Opt Express ; 29(24): 40633-40642, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809398

RESUMO

We report on observations of conical third harmonic emission that emerges during supercontinuum generation produced by self-focusing and filamentation of high (20-200 kHz) repetition rate 180 fs, 1035 nm pulses from an amplified Yb:KGW laser in various nonlinear crystals and glasses: YAG, sapphire, YLF, LiF, CaF2, MgF2, LiSAF, fused silica and BK-7 glass. We show that conical third harmonic generation is a phase-matched four-wave mixing process, where noncollinear phase matching is achieved by means of reciprocal lattice vector, inversely proportional to the period of nanograting, which is inscribed by femtosecond filament in the volume of nonlinear material. The existence of a particular period required to phase match conical third harmonic generation was indirectly verified by investigations of periodicity features of high and low spatial frequency laser-induced periodic surface structures, in which matter is reorganized in a similar fashion.

3.
Opt Lett ; 45(16): 4507-4510, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796995

RESUMO

We have experimentally investigated supercontinuum (SC) generation and the evolution of optical damage in sapphire and YAG crystals with 180 fs, 1035 nm pulses from an amplified Yb:KGW laser with variable repetition rates, both in tight and loose focusing conditions. In this Letter, we demonstrate that the extinction of the SC spectrum always correlates with an occurrence of conical third harmonic generation, which readily serves as an indication of the onset of in-bulk optical damage. Damage-related structural changes of the nonlinear material are also justified by an increased intensity and large red shift of crystal luminescence spectrum corresponding to the F center emission. The SC spectrum in sapphire starts shrinking on the time scale between seconds and minutes by varying the focusing condition from tight to loose at the laser repetition rate of 200 kHz, whereas the YAG crystal produces stable performance for several hours at least.

4.
Opt Express ; 25(6): 6746-6756, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381018

RESUMO

We experimentally investigate filamentation and supercontinuum generation in a birefringent medium (BBO crystal), in the self-focusing regime where intrinsic cubic nonlinearity is either enhanced or reduced by the second-order cascading due to phase-mismatched second harmonic generation. We demonstrate that the supercontinuum spectral extent is efficiently controlled by varying the phase mismatch parameter. In the range of negative phase mismatch, we achieve full control of the blue-shifted spectral broadening, which is very robust and independent on the input pulse energy. In the range of positive phase mismatch, both the blue-shifted and the red-shifted spectral broadenings are controlled simultaneously, however showing a certain dependence on the input pulse energy. The results are interpreted in terms of complex interplay between the self-phase-matched second harmonic generation, which is a process inherent to narrow ultrashort pulsed laser beams and concurrent self-steepening processes which arise from cubic and cascaded-quadratic nonlinearities.

5.
J Opt Soc Am A Opt Image Sci Vis ; 32(7): 1313-6, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367160

RESUMO

We investigate the early stage of propagation of Bessel-Gauss vortex beams where a transition regime shows a progressive lateral expansion of the main intensity ring before reaching a diffraction-free regime. The eikonal equation is used to characterize the beam structure. The beam is featured by a family of hyperboloids with variable waists, generating a tapered tubular caustic. Our analytical results are in excellent agreement with numerical and experimental results. We show the transition regime can be well eliminated by using hollow input beams.

6.
Phys Rev Lett ; 112(22): 223902, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949768

RESUMO

The interaction between a large number of laser filaments brought together using weak external focusing leads to the emergence of few filamentary structures reminiscent of standard filaments, but carrying a higher intensity. The resulting plasma is measured to be 1 order of magnitude denser than for short-scale filaments. This new propagation regime is dubbed superfilamentation. Numerical simulations of a nonlinear envelope equation provide good agreement with experiments.

7.
Opt Express ; 21(21): 25210-20, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150362

RESUMO

We report on the generation of ultrabroadband supercontinuum (SC) by filamentation of two optical-cycle, carrier-envelope phase-stable pulses at 2 µm in fused silica, sapphire, CaF2 and YAG. The SC spectra extend from 450 nm to more than 2500 nm, and their particular shapes depend on dispersive properties of the materials. Prior to spectral super-broadening, we observe third-harmonic generation, which occurs in the condition of large phase and group velocity mismatch and consists of free and driven components. A double-peaked third-harmonic structure coexists with the SC pulse as demonstrated by the numerical simulations and verified experimentally. The SC pulses have stable carrier envelope phase with short-term rms fluctuations of ∼ 300 mrad, as simultaneously measured in YAG crystal by f-2f and f-3f interferometry, where the latter makes use of intrinsic third-harmonic generation.

8.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984084

RESUMO

Superficial modifications on silicon wafers produced by single-shot focused femtosecond laser irradiation having a 1030 nm wavelength and 300 fs pulse duration were experimentally and theoretically analyzed. The laser fluence window when the amorphous silicon phase develops, resulting in a ring-like modification shape, was experimentally estimated to be between 0.26 J/cm2 and 0.40 J/cm2 and was independent of the silicon dopant type and laser focusing conditions; however, the window was narrower when compared to results reported for shorter pulse durations. In addition, we present a simplified numerical model that can explain and predict the formation of these patterns based on the caloric coefficients of silicon and the energy distribution of the deposited material.

9.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677255

RESUMO

The marking and surface structuring of various materials is important in various industrial fields such as biomaterials, luxury goods, anti-counterfeiting, automotive and aerospace, electronics and semiconductor industries, and others. Recent advances in laser technology, such as burst-mode lasers, have opened new ways of affecting the surfaces of various materials, inducing a different appearance and/or properties of the laser-exposed areas. From earlier studies, it is known that when splitting a single pulse into multiple pulses and thus creating a quasi-MHz-GHz repetition rate regime, it is possible to increase not only the ablation efficiency but it also provides the possibility to tune the heat in-flow into the surface. Such new regimes enable the control of the surface roughness as well as the optical properties and corrosion resistance. In this work, we analyze the effect of the different burst-mode regimes for the marking of stainless-steel samples, aiming to produce high-contrast marking having different shades of black/white color (black-gray-white). Moreover, we investigate the angular dependence of the reflected light after laser treatment numerically from the measured surface morphology.

10.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049082

RESUMO

Femtosecond laser-assisted material surface modification is a rapidly growing field with numerous applications, including tribology, micromechanics, optofluidics, and medical implant treatment. For many of these applications, precise control of surface roughness after laser treatment is crucial, as it directly affects the final properties of the work surface. However, achieving low mean surface roughness values (<100 nm) is challenging due to the fundamental principles of laser light-matter interactions. The complex physical processes that occur during laser material interactions make it difficult to achieve the desired surface roughness, and only advanced scanning methods can potentially solve this issue. In our study, we analyzed laser scanning algorithms to determine the optimal method for producing surfaces with minimal roughness. We investigated how scanning parameters such as the overlap of modifications, the amount of successive line shift, and laser-scanner synchronization impact surface roughness. Using a numerical model, we obtained results that showed good agreement with experimentally acquired data. Our detailed theoretical and experimental analysis of different scanning methods can provide valuable information for the future optimization of minimal-roughness micromachining.

11.
Sci Rep ; 12(1): 20231, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418435

RESUMO

The formation and evolution of laser-induced periodic surface structures in fused silica under irradiation of widely tunable (in the 1-3 [Formula: see text]m range) linearly polarized femtosecond (200 fs) pulses was studied experimentally. The structures were inscribed in high fluence regime (exceeding the surface ablation threshold for a single pulse) and characterized by using scanning electron microscopy and two dimensional Fourier transform. The results revealed rapid (after irradiation with a few successive pulses) formation of periodic laser-induced periodic surface structures aligned parallel to laser polarization, whose period increases with increasing the inscription wavelength, obeying the [Formula: see text] law. With further increase of number of pulses, the generated structures gradually reorganize into laser polarization-independent low spatial frequency annular structures associated with formation of the damage crater, which fully established after irradiation with a few tens of successive laser pulses. This particular evolution scenario was observed over the entire wavelength tuning range of incident pulses.

12.
Light Sci Appl ; 11(1): 326, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385101

RESUMO

Structured light - electromagnetic waves with a strong spatial inhomogeneity of amplitude, phase, and polarization - has occupied far-reaching positions in both optical research and applications. Terahertz (THz) waves, due to recent innovations in photonics and nanotechnology, became so robust that it was not only implemented in a wide variety of applications such as communications, spectroscopic analysis, and non-destructive imaging, but also served as a low-cost and easily implementable experimental platform for novel concept illustration. In this work, we show that structured nonparaxial THz light in the form of Airy, Bessel, and Gaussian beams can be generated in a compact way using exclusively silicon diffractive optics prepared by femtosecond laser ablation technology. The accelerating nature of the generated structured light is demonstrated via THz imaging of objects partially obscured by an opaque beam block. Unlike conventional paraxial approaches, when a combination of a lens and a cubic phase (or amplitude) mask creates a nondiffracting Airy beam, we demonstrate simultaneous lensless nonparaxial THz Airy beam generation and its application in imaging system. Images of single objects, imaging with a controllable placed obstacle, and imaging of stacked graphene layers are presented, revealing hence potential of the approach to inspect quality of 2D materials. Structured nonparaxial THz illumination is investigated both theoretically and experimentally with appropriate extensive benchmarks. The structured THz illumination consistently outperforms the conventional one in resolution and contrast, thus opening new frontiers of structured light applications in imaging and inverse scattering problems, as it enables sophisticated estimates of optical properties of the investigated structures.

13.
Sci Rep ; 11(1): 15019, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294792

RESUMO

We compare supercontinuum generation in [Formula: see text] crystal under tight and loose focusing of 150 fs, 515 nm second harmonic pulses from an amplified Yb:KGW laser at a repetition rate of 10 kHz. It is demonstrated that supercontinuum generation geometry applying loose focusing ([Formula: see text]) of the pump beam into a long (25 mm) [Formula: see text] sample is advantageous in terms of supercontinuum spectral extent and durability of damage-free operation of the nonlinear material as compared to a commonly used supercontinuum generation setup which employs tight focusing ([Formula: see text]) into a short (5 mm) sample and to setup which uses tight focusing into a long (25 mm) sample. More specifically, loose focusing into a long sample showed remarkably longer (20 min) damage-free operation of the nonlinear material, which was not translated with respect of the pump beam, while in tight focusing condition the sample is damaged just within 2 min of operation, leading to a complete extinction of the supercontinuum spectrum. The evolution of optical degradation of the nonlinear material in time and its impact to supercontinuum spectrum is studied in terms of filament-induced luminescence due to self-trapped exciton emission and light scattering at the pump wavelength indicating the onset of optical damage. Our findings are supported by the numerical simulations which compare relevant parameters related to filament propagation in tight and loose focusing conditions.

14.
Micromachines (Basel) ; 11(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751113

RESUMO

In this work, a burst mode laser is used for micromachining of 20 µm-250 µm thick Invar (Fe64/Ni36) foils. Holes were drilled by firing multiple pulses transversely onto the sample without moving the beam (percussion drilling). The utilized laser system generates a burst of a controllable number of pulses (at 1030 nm) with tunable pulse-to-pulse time spacing ranging from 200 ps to 16 ns. The sub-pulses within the burst have equal amplitudes and a constant duration of 300 fs that do not change regardless of the spacing in time between them. In such a way, the laser generates GHz to MHz repetition rate pulse bursts with a burst repetition rate ranging from 100 kHz to a single shot. Drilling of the material is compared with the non-burst mode of kHz repetition rate. In addition, we analyze the drilling speed and the resulting dependence of the quality of the holes on the number of pulses per burst as well as the average laser power to find the optimal micromachining parameters for percussion drilling. We demonstrate that the micromachining throughput can be of an order of magnitude higher when using the burst mode as compared to the best results of the conventional kHz case; however, excess thermal damage was also evident in some cases.

15.
Micromachines (Basel) ; 11(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321925

RESUMO

Biocompatible polymers are used for many different purposes (catheters, artificial heart components, dentistry products, etc.). An important field for biocompatible polymers is the production of vision implants known as intraocular lenses or custom-shape contact lenses. Typically, curved surfaces are manufactured by mechanical means such as milling, turning or lathe cutting. The 2.5 D objects/surfaces can also be manufactured by means of laser micromachining; however, due to the nature of light-matter interaction, it is difficult to produce a surface finish with surface roughness values lower than ~1 µm Ra. Therefore, laser micromachining alone can't produce the final parts with optical-grade quality. Laser machined surfaces may be polished via mechanical methods; however, the process may take up to several days, which makes the production of implants economically challenging. The aim of this study is the investigation of the polishing capabilities of rough (~1 µm Ra) hydrophilic acrylic surfaces using bursts of femtosecond laser pulses. By changing different laser parameters, it was possible to find a regime where the surface roughness can be minimized to 18 nm Ra, while the polishing of the entire part takes a matter of seconds. The produced surface demonstrates a transparent appearance and the process shows great promise towards commercial fabrication of low surface roughness custom-shape optics.

16.
Phys Rev E ; 93(6): 063106, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415357

RESUMO

Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

17.
Sci Rep ; 5: 8914, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753215

RESUMO

An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 10(13) W/cm(2) has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA