Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Biol Rep ; 50(12): 10627-10635, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740859

RESUMO

Modeling severe acute respiratory syndrome, Coronavirus 2 (SARS-CoV-2) infection in stem cell-derived organoids has helped in our understanding of the molecular pathogenesis of COVID-19 disease due to their resemblance to actual human tissues or organs. Over the past decade, organoid 3-dimensional (3D) cultures have represented a new perspective and considerable advancement over traditional in vitro 2-dimensional (2D) cell cultures. COVID-19 disease causes lung injury and multi-organ failure leading to death, especially in older patients. There is an urgent need for physiological models to study SARS-CoV-2 infection during the pandemic. Human stem cell-derived organoids can provide insight into understanding the SARS-CoV-2 cell entry molecular mechanism. Identifying such complexities will help to develop the best preventive drug targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Idoso , Células-Tronco , Técnicas de Cultura de Células , Organoides
2.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30967472

RESUMO

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas Repressoras/biossíntese , Acidente Vascular Cerebral/metabolismo , Transativadores/biossíntese , Motivos de Aminoácidos , Animais , Morte Celular , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F4/genética , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Transativadores/genética
3.
Bioessays ; 38(4): 325-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857166

RESUMO

Cell cycle dynamics has emerged as a key regulator of stem cell fate decisions. In particular, differentiation decisions are associated with the G1 phase, and recent evidence suggests that self-renewal is actively regulated outside of G1. The mechanisms underlying these phenomena are largely unknown, but direct control of gene regulatory programs by the cell cycle machinery is heavily implicated. A recent study sheds important mechanistic insight by demonstrating that in human embryonic stem cells (hESCs) the Cyclin-dependent kinase CDK2 controls a wide-spread epigenetic program that drives transcription at differentiation-related gene promoters specifically in G1. Here, we discuss this finding and explore whether similar mechanisms are likely to function in multipotent stem cells. The implications of this discovery toward our understanding of stem cell-related disease are discussed, and we postulate novel mechanisms that position the cell cycle as a regulator of cell fate gene networks at epigenetic, transcriptional and post-transcriptional levels.


Assuntos
Quinase 2 Dependente de Ciclina/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Fase G1/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/citologia , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neurais/citologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Transcrição Gênica
4.
J Neurosci ; 32(24): 8219-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699903

RESUMO

During brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain. The Rb/E2F pathway modulates Dlx1/Dlx2 regulation through direct interaction with a Dlx forebrain-specific enhancer, I12b, and the Dlx1/Dlx2 proximal promoter regions, through repressor E2F sites both in vitro and in vivo. In the absence of Rb, we demonstrate that repressor E2Fs inhibit Dlx transcription at the Dlx1/Dlx2 promoters and Dlx1/2-I12b enhancer to suppress differentiation. Our findings support a model whereby the cell cycle machinery not only controls cell division but also modulates neuronal differentiation and migration through direct regulation of the Dlx1/Dlx2 bigene cluster during embryonic development.


Assuntos
Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Contagem de Células/métodos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Transdução de Sinais/fisiologia
5.
Adv Sci (Weinh) ; 10(26): e2302611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400371

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Engenharia Tecidual , Peixe-Zebra , Alvo Mecanístico do Complexo 1 de Rapamicina
6.
Cardiovasc Res ; 119(15): 2522-2535, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37739930

RESUMO

AIMS: Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS: The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION: Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Miócitos Cardíacos , Potenciais de Ação , Éteres , Canal de Potássio ERG1/genética
8.
Methods Mol Biol ; 2515: 319-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776361

RESUMO

The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Células-Tronco Pluripotentes , Encéfalo , Humanos , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo
10.
Front Cell Neurosci ; 15: 767457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867204

RESUMO

The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.

11.
J Am Chem Soc ; 132(39): 13813-22, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20839807

RESUMO

We report a rhodium catalyst that exhibits high reactivity for the hydroamination of primary aminoalkenes that are unbiased toward cyclization and that possess functional groups incompatible with more electrophilic hydroamination catalysts. The rhodium catalyst contains an unusual diaminophosphine ligand (L1) that binds to rhodium in a κ(3)-P,O,P mode. The reactions catalyzed by this complex typically proceed at mild temperatures (room temperature to 70 °C) and occur with primary aminoalkenes lacking substituents on the alkyl chain that bias the system toward cyclization, with primary aminoalkenes containing chloride, ester, ether, enolizable ketone, nitrile, and unprotected alcohol functionality, and with primary aminoalkenes containing internal olefins. Mechanistic data imply that these reactions occur with a turnover-limiting step that is different from that of reactions catalyzed by late-transition-metal complexes of Pd, Pt, and Ir. This change in the turnover-limiting step and resulting high activity of the catalyst stem from favorable relative rates for protonolysis of the M-C bond to release the hydroamination product versus reversion of the aminoalkyl intermediate to regenerate the acyclic precursor. Probes of the origin of the reactivity of the rhodium complex of L1 imply that the aminophosphine groups lead to these favorable rates by effects beyond steric demands and simple electron donation to the metal center.


Assuntos
Alcenos/síntese química , Compostos Organometálicos/química , Fosfinas/química , Ródio/química , Alcenos/química , Aminação , Catálise , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
12.
Front Cell Dev Biol ; 8: 591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733892

RESUMO

Regulation of stem cell fate is best understood at the level of gene and protein regulatory networks, though it is now clear that multiple cellular organelles also have critical impacts. A growing appreciation for the functional interconnectedness of organelles suggests that an orchestration of integrated biological networks functions to drive stem cell fate decisions and regulate metabolism. Metabolic signaling itself has emerged as an integral regulator of cell fate including the determination of identity, activation state, survival, and differentiation potential of many developmental, adult, disease, and cancer-associated stem cell populations and their progeny. As the primary adenosine triphosphate-generating organelles, mitochondria are well-known regulators of stem cell fate decisions, yet it is now becoming apparent that additional organelles such as the lysosome are important players in mediating these dynamic decisions. In this review, we will focus on the emerging role of organelles, in particular lysosomes, in the reprogramming of both metabolic networks and stem cell fate decisions, especially those that impact the determination of cell identity. We will discuss the inter-organelle interactions, cell signaling pathways, and transcriptional regulatory mechanisms with which lysosomes engage and how these activities impact metabolic signaling. We will further review recent data that position lysosomes as critical regulators of cell identity determination programs and discuss the known or putative biological mechanisms. Finally, we will briefly highlight the potential impact of elucidating mechanisms by which lysosomes regulate stem cell identity on our understanding of disease pathogenesis, as well as the development of refined regenerative medicine, biomarker, and therapeutic strategies.

13.
Mol Cell Biol ; 26(9): 3659-71, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16612004

RESUMO

The retinoblastoma protein (pRb) has been proposed to regulate cell cycle progression in part through its ability to interact with enzymes that modify histone tails and create a repressed chromatin structure. We created a mutation in the murine Rb1 gene that disrupted pRb's ability to interact with these enzymes to determine if it affected cell cycle control. Here, we show that loss of this interaction slows progression through mitosis and causes aneuploidy. Our experiments reveal that while the LXCXE binding site mutation does not disrupt pRb's interaction with the Suv4-20h histone methyltransferases, it dramatically reduces H4-K20 trimethylation in pericentric heterochromatin. Disruption of heterochromatin structure in this chromosomal region leads to centromere fusions, chromosome missegregation, and genomic instability. These results demonstrate the surprising finding that pRb uses the LXCXE binding cleft to control chromatin structure for the regulation of events beyond the G(1)-to-S-phase transition.


Assuntos
Aneuploidia , Centrômero/metabolismo , Heterocromatina/metabolismo , Mitose/genética , Proteína do Retinoblastoma/fisiologia , Animais , Sítios de Ligação/genética , Ciclo Celular/genética , Células Cultivadas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Mutantes , Mutação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
14.
Bioorg Med Chem Lett ; 19(5): 1446-50, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19185488

RESUMO

Novel 4,4-disubstituted cyclohexylbenzamide inhibitors of 11beta-HSD1 were optimized to account for liabilities relating to in vitro pharmacokinetics, cytotoxicity and protein-related shifts in potency. A representative compound showing favorable in vivo pharmacokinetics was found to be an efficacious inhibitor of 11beta-HSD1 in a rat pharmacodynamic model (ED(50)=10mg/kg).


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Benzamidas/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Benzamidas/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Macaca fascicularis , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
16.
Adv Mater ; 31(7): e1806214, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30589121

RESUMO

Cell behavior is highly dependent upon microenvironment. Thus, to identify drugs targeting metastatic cancer, screens need to be performed in tissue mimetic substrates that allow cell invasion and matrix remodeling. A novel biomimetic 3D hydrogel platform that enables quantitative analysis of cell invasion and viability at the individual cell level is developed using automated data acquisition methods with an invasive lung disease (lymphangioleiomyomatosis, LAM) characterized by hyperactive mammalian target of rapamycin complex 1 (mTORC1) signaling as a model. To test the lung-mimetic hydrogel platform, a kinase inhibitor screen is performed using tuberous sclerosis complex 2 (TSC2) hypomorphic cells, identifying Cdk2 inhibition as a putative LAM therapeutic. The 3D hydrogels mimic the native niche, enable multiple modes of invasion, and delineate phenotypic differences between healthy and diseased cells, all of which are critical to effective drug screens of highly invasive diseases including lung cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Hidrogéis , Neoplasias Pulmonares/tratamento farmacológico , Modelos Biológicos , Animais , Antineoplásicos/farmacologia , Automação Laboratorial , Materiais Biomiméticos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Teste de Materiais , Fosfotransferases/antagonistas & inibidores , Ratos , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
17.
J Am Chem Soc ; 130(48): 16407-16, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-18980317

RESUMO

Convergent total syntheses of the potent cytotoxins (+)-tedanolide (1) and (+)-13-deoxytedanolide (2) are described. The carbon framework of these compounds was assembled via a stereoselective aldol reaction that unifies the C(1)-C(12) ketone fragment 5 with a C(13)-C(23) aldehyde fragment 6 (for 13-deoxytedanolide) or 52 (for tedanolide). Multiple obstacles were encountered en route to (+)-1 and (+)-2 that required very careful selection and orchestration of the stereochemistry and functionality of key intermediates. Chief among these issues was the remarkable stability and lack of reactivity of hemiketals 33b and 34 that prevented the tedanolide synthesis from being completed from aldol 4. Key to the successful completion of the tedanolide synthesis was the observation that the 13-deoxy hemiketal 36 could be oxidized to C(11,15)-diketone 38 en route to 13-deoxytedanolide. This led to the decision to pursue the tedanolide synthesis via C(15)-(S)-epimers, since this stereochemical change would destabilize the hemiketal that plagued the attempted synthesis of tedanolide via C(15)-(R) intermediates. However, use of C(15)-(S)-configured intermediates required that the side-chain epoxide be introduced very late in the synthesis, owing to the ease with which the C(15)-(S)-OH cyclized onto the epoxide of intermediate 50.


Assuntos
Macrolídeos/síntese química , Aldeídos/química , Produtos Biológicos/química , Cetonas/química , Macrolídeos/química , Estrutura Molecular
18.
Mol Ther Methods Clin Dev ; 9: 12-22, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29255742

RESUMO

The tumor suppressor PTEN is frequently inactivated in glioblastoma. PTEN-L is a long form of PTEN produced by translation from an alternate upstream start codon. Unlike PTEN, PTEN-L has a signal sequence and a tract of six arginine residues that allow PTEN-L to be secreted from cells and be taken up by neighboring cells. This suggests that PTEN-L could be used as a therapeutic to restore PTEN activity. However, effective delivery of therapeutic proteins to treat CNS cancers such as glioblastoma is challenging. One method under evaluation is cell-mediated therapy, where cells with tumor-homing abilities such as neural stem cells are genetically modified to express a therapeutic protein. Here, we have developed a version of PTEN-L that is engineered for enhanced cell-mediated delivery. This was accomplished by replacement of the native leader sequence of PTEN-L with a leader sequence from human light-chain immunoglobulin G (IgG). This version of PTEN-L showed increased secretion and an increased ability to transfer to neighboring cells. Neural stem cells derived from human fibroblasts could be modified to express this version of PTEN-L and were able to deliver catalytically active light-chain leader PTEN-L (lclPTEN-L) to neighboring glioblastoma cells.

19.
Curr Opin Genet Dev ; 46: 24-36, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28662445

RESUMO

Over the last decade significant advances have been made toward reprogramming the fate of somatic cells, typically by overexpression of cell lineage-determinant transcription factors. As key regulators of cell fate, the SOX family of transcription factors has emerged as potent drivers of direct somatic cell reprogramming into multiple lineages, in some cases as the sole overexpressed factor. The vast capacity of SOX factors, especially those of the SOXB1, E and F subclasses, to reprogram cell fate is enlightening our understanding of organismal development, cancer and disease, and offers tremendous potential for regenerative medicine and cell-based therapies. Understanding the molecular mechanisms through which SOX factors reprogram cell fate is essential to optimize the development of novel somatic cell transdifferentiation strategies.


Assuntos
Diferenciação Celular/genética , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Animais , Humanos , Medicina Regenerativa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXF/genética
20.
Cancer Res ; 77(20): 5491-5502, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830860

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive destructive neoplasm of the lung associated with inactivating mutations in the TSC1 or TSC2 tumor suppressor genes. Cell or animal models that accurately reflect the pathology of LAM have been challenging to develop. Here, we generated a robust human cell model of LAM by reprogramming TSC2 mutation-bearing fibroblasts from a patient with both tuberous sclerosis complex (TSC) and LAM (TSC-LAM) into induced pluripotent stem cells (iPSC), followed by selection of cells that resemble those found in LAM tumors by unbiased in vivo differentiation. We established expandable cell lines under smooth muscle cell (SMC) growth conditions that retained a patient-specific genomic TSC2+/- mutation and recapitulated the molecular and functional characteristics of pulmonary LAM cells. These include multiple indicators of hyperactive mTORC1 signaling, presence of specific neural crest and SMC markers, expression of VEGF-D and female sex hormone receptors, reduced autophagy, and metabolic reprogramming. Intriguingly, the LAM-like features of these cells suggest that haploinsufficiency at the TSC2 locus contributes to LAM pathology, and demonstrated that iPSC reprogramming and SMC lineage differentiation of somatic patient cells with germline mutations was a viable approach to generate LAM-like cells. The patient-derived SMC lines we have developed thus represent a novel cellular model of LAM that can advance our understanding of disease pathogenesis and develop therapeutic strategies against LAM. Cancer Res; 77(20); 5491-502. ©2017 AACR.


Assuntos
Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Miócitos de Músculo Liso/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA