Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cereb Cortex ; 33(15): 9263-9279, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310176

RESUMO

We studied the effect of multimodal traumatic brain injuries on daily sleep/activity patterns and related histology. Gyrencephalic ferrets wore actigraphs and received military-relevant brain injuries including shockwaves, strong rotational impact, and variable stress, which were evaluated up to 6 months post injury. Sham and Baseline animals exhibited activity patterns occurring in distinct clusters of high activity, interspersed with periods of low activity. In the Injury and Injury + Stress groups, activity clusters diminished and overall activity patterns became significantly more dispersed at 4 weeks post injury with significant sleep fragmentation. Additionally, the Injury + Stress group exhibited a significant decrease in daytime high activity up to 4 months post injury. At 4 weeks post injury, the reactive astrocyte (GFAP) immunoreactivity was significantly greater in both the injury groups compared to Sham, but did not differ at 6 months post injury. The intensity of immunoreactivity of the astrocytic endfeet that surround blood vessels (visualized with aquaporin 4; AQP4), however, differed significantly from Sham at 4 weeks post injury (in both injured groups) and at 6 months (Injury + Stress only). As the distribution of AQP4 plays a key role in the glymphatic system, we suggest that glymphatic disruption occurs in ferrets after the injuries described here.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Concussão Encefálica/complicações , Furões , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Sono
2.
Dev Neurosci ; 40(1): 39-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29393204

RESUMO

KCC2 (a brain-specific potassium-chloride cotransporter) affects development of the cerebral cortex, including aspects of neuronal migration and cellular maturation and differentiation. KCC2 also modulates chloride homeostasis by influencing the switch of GABA from depolarizing in young neurons to hyperpolarizing in mature neurons. We describe the expression pattern, regional distribution, and cellular colocalization of KCC2 in the ferret cortex in normal kits and those treated with methylazoxymethanol acetate (MAM). We earlier developed a model of impaired cortical development by injecting MAM during mid-cortical gestation, which briefly interferes with neuronal production and additionally results in increased levels of KCC2 at P0. Using immunohistochemistry, we show a shift in KCC2 expression during development, being high in the subplate at P0, repositioning into a subtle laminar pattern in the neocortex at P7-P14, and becoming homogeneous at P35. KCC2 colocalizes with neuronal markers in the developing and mature cerebral cortex of normal ferrets and those treated with MAM, but shows a differential pattern of expression at different ages and locates in distinct cellular compartments during development. Subcellular localization shows that KCC2 predominantly situates in the membrane fraction of neocortical samples. These findings reveal that KCC2 colocalizes differentially with neurons and its expression pattern alters during development.


Assuntos
Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Neurogênese/fisiologia , Simportadores/metabolismo , Animais , Animais Recém-Nascidos , Furões , Neurônios/metabolismo , Cotransportadores de K e Cl-
3.
J Neurosci Res ; 96(4): 612-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28609579

RESUMO

This article provides a review of brain tissue alterations that may be detectable using diffusion magnetic resonance imaging MRI (dMRI) approaches and an overview and perspective on the modern dMRI toolkits for characterizing alterations that follow traumatic brain injury (TBI). Noninvasive imaging is a cornerstone of clinical treatment of TBI and has become increasingly used for preclinical and basic research studies. In particular, quantitative MRI methods have the potential to distinguish and evaluate the complex collection of neurobiological responses to TBI arising from pathology, neuroprotection, and recovery. dMRI provides unique information about the physical environment in tissue and can be used to probe physiological, architectural, and microstructural features. Although well-established approaches such as diffusion tensor imaging are known to be highly sensitive to changes in the tissue environment, more advanced dMRI techniques have been developed that may offer increased specificity or new information for describing abnormalities. These tools are promising, but incompletely understood in the context of TBI. Furthermore, model dependencies and relative limitations may impact the implementation of these approaches and the interpretation of abnormalities in their metrics. The objective of this paper is to present a basic review and comparison across dMRI methods as they pertain to the detection of the most commonly observed tissue and cellular alterations following TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Furões , Camundongos , Ratos
4.
J Neurosci Res ; 96(4): 556-572, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29360208

RESUMO

White matter damage is an important consequence of traumatic brain injury (TBI) in humans. Unlike rodents, ferrets have a substantial amount of white matter and a gyrencephalic brain; therefore, they may represent an ideal small mammal model to study human-pertinent consequences of TBI. Here we report immunohistochemical and behavioral results after a controlled cortical impact (CCI) injury to the sensorimotor cortex of adult male ferrets. We assessed inflammation in the neocortex and white matter, and behavior at 1 day post injury and 1, 4, and 16 weeks post injury (WPI). CCI in the ferret produced inflammation that originated in the neocortex near the site of the injury and progressed deep into the white matter with time. The density of microglia and astrocytes increased in the neocortex near the injury, peaking at 4WPI and remaining elevated at 16WPI. Microglial morphology in the neocortex was significantly altered in the first 4 weeks, but showed a return toward normal at 16 weeks. Clusters of microglial cells in the white matter persisted until 16WPI. We assessed motor and cognitive behavior using the open field, novel object recognition, T-maze, and gait tests. A transient deficit in memory occurred at 4WPI, with a reduction of rearing and motor ability at 12 and 16WPI. Behavioral impairments coincide with features of the inflammatory changes in the neocortex revealed by immunohistochemistry. The ferret represents an important animal model to explore ongoing damage in the white matter and cerebral cortex after TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Progressão da Doença , Aprendizagem em Labirinto , Neocórtex/patologia , Animais , Ansiedade , Proteínas de Ligação ao Cálcio/metabolismo , Furões , Marcha/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Memória de Curto Prazo , Microglia/citologia , Microglia/patologia , Atividade Motora , Reconhecimento Psicológico , Substância Branca/patologia
5.
Magn Reson Med ; 78(5): 1767-1780, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090658

RESUMO

PURPOSE: This study was a systematic evaluation across different and prominent diffusion MRI models to better understand the ways in which scalar metrics are influenced by experimental factors, including experimental design (diffusion-weighted imaging [DWI] sampling) and noise. METHODS: Four diffusion MRI models-diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator MRI (MAP-MRI), and neurite orientation dispersion and density imaging (NODDI)-were evaluated by comparing maps and histogram values of the scalar metrics generated using DWI datasets obtained in fixed mouse brain with different noise levels and DWI sampling complexity. Additionally, models were fit with different input parameters or constraints to examine the consequences of model fitting procedures. RESULTS: Experimental factors affected all models and metrics to varying degrees. Model complexity influenced sensitivity to DWI sampling and noise, especially for metrics reporting non-Gaussian information. DKI metrics were highly susceptible to noise and experimental design. The influence of fixed parameter selection for the NODDI model was found to be considerable, as was the impact of initial tensor fitting in the MAP-MRI model. CONCLUSION: Across DTI, DKI, MAP-MRI, and NODDI, a wide range of dependence on experimental factors was observed that elucidate principles and practical implications for advanced diffusion MRI. Magn Reson Med 78:1767-1780, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Animais , Masculino , Camundongos , Modelos Teóricos , Água
6.
Cereb Cortex ; 25(2): 346-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23968831

RESUMO

We used several animal models to study global and regional cortical surface expansion: The lissencephalic mouse, gyrencephalic normal ferrets, in which the parietal cortex expands more than the temporal cortex, and moderately lissencephalic ferrets, showing a similar degree of temporal and parietal expansion. We found that overall cortical surface expansion is achieved when specific events occur prior to surpragranular layer formation. (1) The subventricular zone (SVZ) shows substantial growth, (2) the inner SVZ contains an increased number of outer radial glia and intermediate progenitor cells expressing Pax6, and (3) the outer SVZ contains a progenitor cell composition similar to the combined VZ and inner SVZ. A greater parietal expansion is also achieved by eliminating the latero-dorsal neurogenic gradient, so that neurogenesis displays a similar developmental degree between parietal and temporal regions. In contrast, mice or lissencephalic ferrets show more advanced neurogenesis in the temporal region. In conclusion, we propose that global and regional cortical surface expansion rely on similar strategies consisting in altering the timing of neurogenic events prior to the surpragranular layer formation, so that more progenitor cells, and ultimately more neurons, are produced. This hypothesis is supported by findings from a ferret model of lissencephaly obtained by transiently blocking neurogenesis during the formation of layer IV.


Assuntos
Evolução Biológica , Neurogênese/fisiologia , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/fisiologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Furões , Proteínas de Homeodomínio/metabolismo , Lisencefalia/patologia , Lisencefalia/fisiopatologia , Acetato de Metilazoximetanol , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Neuroglia/citologia , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/patologia , Neurônios/fisiologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Lobo Parietal/anatomia & histologia , Lobo Parietal/patologia , Proteínas Repressoras/metabolismo , Nicho de Células-Tronco/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/patologia
8.
Front Immunol ; 13: 834424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769472

RESUMO

Traumatic brain injury, stroke, and neurodegenerative diseases represent a major cause of morbidity and mortality in Africa, as in the rest of the world. Traumatic brain and spinal cord injuries specifically represent a leading cause of disability in the younger population. Stroke and neurodegenerative disorders predominantly target the elderly and are a major concern in Africa, since their rate of increase among the ageing is the fastest in the world. Neuroimmunology is usually not associated with non-communicable neurological disorders, as the role of neuroinflammation is not often considered when evaluating their cause and pathogenesis. However, substantial evidence indicates that neuroinflammation is extremely relevant in determining the consequences of non-communicable neurological disorders, both for its protective abilities as well as for its destructive capacity. We review here current knowledge on the contribution of neuroinflammation and neuroimmunology to the pathogenesis of traumatic injuries, stroke and neurodegenerative diseases, with a particular focus on problems that are already a major issue in Africa, like traumatic brain injury, and on emerging disorders such as dementias.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Idoso , Humanos , Morbidade , Doenças Neuroinflamatórias
9.
Behav Neurosci ; 136(4): 330-345, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35901376

RESUMO

As the smallest mammal with a gyrencephalic cerebral cortex, ferrets are becoming increasingly important animal models to study neurological disorders. In order for them to be optimally used, typical behavioral measurements are highly desirable. To ascertain a baseline level of behavior, we conducted a battery of tests assessing motor, social, memory, headache, and aspects of depressive-like behavior. Adult male ferrets participated in open field, beam walk, sucrose preference, eye contact, light/dark box, socialization, and novel object recognition tests. The animals were assessed in three cohorts, which differed in age, with the youngest group being approximately 1 year younger than the oldest. Small, but significant, differences occurred between the youngest cohort and the older groups in several areas, suggesting that age may be an important factor when evaluating ferret behavior. Ferrets showed a high level of sociability in the eye contact tests and with novel animal preference. These experiments represent an important baseline of expected normative results that can provide a reference for normal ferret behavior and expected variability. The data reported here may serve as a reference for future intervention studies using the ferret. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Escala de Avaliação Comportamental , Furões , Animais , Córtex Cerebral , Humanos , Masculino
10.
J Neuropathol Exp Neurol ; 80(2): 112-128, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33421075

RESUMO

Blast exposures are a hallmark of contemporary military conflicts. We need improved preclinical models of blast traumatic brain injury for translation of pharmaceutical and therapeutic protocols. Compared with rodents, the ferret brain is larger, has substantial sulci, gyri, a higher white to gray matter ratio, and the hippocampus in a ventral position; these attributes facilitate comparison with the human brain. In this study, ferrets received compressed air shock waves and subsequent evaluation of glia and forms of tau following survival of up to 12 weeks. Immunohistochemistry and Western blot demonstrated altered distributions of astrogliosis and tau expression after blast exposure. Many aspects of the astrogliosis corresponded to human pathology: increased subpial reactivity, gliosis at gray-white matter interfaces, and extensive outlining of blood vessels. MRI analysis showed numerous hypointensities occurring in the 12-week survival animals, appearing to correspond to luminal expansions of blood vessels. Changes in forms of tau, including phosphorylated tau, and the isoforms 3R and 4R were noted using immunohistochemistry and Western blot in specific regions of the cerebral cortex. Of particular interest were the 3R and 4R isoforms, which modified their ratio after blast. Our data strongly support the ferret as an animal model with highly translational features to study blast injury.


Assuntos
Traumatismos por Explosões/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Furões , Masculino
11.
Front Neurosci ; 15: 779533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35280340

RESUMO

Pre-clinical models of traumatic brain injury (TBI) have been the primary experimental tool for understanding the potential mechanisms and cellular alterations that follow brain injury, but the human relevance and translational value of these models are often called into question. Efforts to better recapitulate injury biomechanics and the use of non-rodent species with neuroanatomical similarities to humans may address these concerns and promise to advance experimental studies toward clinical impact. In addition to improving translational aspects of animal models, it is also advantageous to establish pre-clinical outcomes that can be directly compared with the same outcomes in humans. Non-invasive imaging and particularly MRI is promising for this purpose given that MRI is a primary tool for clinical diagnosis and at the same time increasingly available at the pre-clinical level. The objective of this study was to identify which commonly used radiologic markers of TBI outcomes can be found also in a translationally relevant pre-clinical model of TBI. The ferret was selected as a human relevant species for this study with folded cortical geometry and relatively high white matter content and the closed head injury model of engineered rotation and acceleration (CHIMERA) TBI model was selected for biomechanical similarities to human injury. A comprehensive battery of MRI protocols based on common data elements (CDEs) for human TBI was collected longitudinally for the identification of MRI markers and voxelwise analysis of T2, contrast enhancement and diffusion tensor MRI values. The most prominent MRI findings were consistent with focal hemorrhage and edema in the brain stem region following high severity injury as well as vascular and meningeal injury evident by contrast enhancement. While conventional MRI outcomes were not highly conspicuous in less severe cases, quantitative voxelwise analysis indicated diffusivity and anisotropy alterations in the acute and chronic periods after TBI. The main conclusions of this study support the translational relevance of closed head TBI models in intermediate species and identify brain stem and meningeal vulnerability. Additionally, the MRI findings highlight a subset of CDEs with promise to bridge pre-clinical studies with human TBI outcomes.

12.
Cereb Cortex ; 18(1): 78-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17443019

RESUMO

During cerebral cortical development, gamma-aminobutyric acidergic (GABAergic) interneurons arise from a different site than projection neurons. GABAergic cells are generated in the subpallial ganglionic eminence (GE), while excitatory projection neurons arise from the neocortical ventricular zone. Our laboratory studies a model of cortical dysplasia that displays specific disruption of GABAergic mechanisms and an alteration in the overall balance of excitation in the neocortex. To produce this model, the birth of neurons on a specific gestational day in ferrets (embryonic day 33 [E33]) is interrupted by injection of the antimitotic methylazoxymethanol (MAM). We hypothesized that migration of interneurons might be disrupted in this cortical dysplasia paradigm. We observed that although interneurons migrate into the neocortex in both normal and dysplastic cortex, the migrating cells become disoriented over time after E33 MAM treatment. Coculture experiments using normal GE and MAM-treated cortex (and vice versa) demonstrate that cues dictating proper orientation of migrating interneurons arise from the cortex and are not intrinsic to the migrating cells. As a consequence, interneurons in mature brains of MAM-treated animals are abnormally distributed. We report that GABA(A) receptor activation is crucial to the proper positioning of interneurons migrating into the cortex from the GE in normal and MAM-treated animals.


Assuntos
Modelos Animais de Doenças , Interneurônios/patologia , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Neocórtex/patologia , Neocórtex/fisiopatologia , Receptores de GABA-A/metabolismo , Animais , Movimento Celular , Furões
13.
Brain Res Bull ; 145: 2-17, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30658129

RESUMO

Viral infections are a major cause of human central nervous system infection, and may be associated with significant mortality, and long-term sequelae. In Africa, the lack of effective therapies, limited diagnostic and human resource facilities are especially in dire need. Most viruses that affect the central nervous system are opportunistic or accidental pathogens. Some of these viruses were initially considered harmless, however they have now evolved to penetrate the nervous system efficiently and exploit neuronal cell biology thus resulting in severe illness. A number of potentially lethal neurotropic viruses have been discovered in Africa and over the course of time shown their ability to spread wider afield involving other continents leaving a devastating impact in their trail. In this review we discuss key viruses involved in central nervous system disease and of major public health concern with respect to Africa. These arise from the families of Flaviviridae, Filoviridae, Retroviridae, Bunyaviridae, Rhabdoviridae and Herpesviridae. In terms of the number of cases affected by these viruses, HIV (Retroviridae) tops the list for morbidity, mortality and long term disability, while the Rift Valley Fever virus (Bunyaviridae) is at the bottom of the list. The most deadly are the Ebola and Marburg viruses (Filoviridae). This review describes their epidemiology and key neurological manifestations as regards the central nervous system such as meningoencephalitis and Guillain-Barré syndrome. The potential pathogenic mechanisms adopted by these viruses are debated and research perspectives suggested.


Assuntos
Viroses do Sistema Nervoso Central/epidemiologia , Sistema Nervoso Central/virologia , África/epidemiologia , Ebolavirus/patogenicidade , HIV/patogenicidade , Humanos , Simplexvirus/patogenicidade , Zika virus/patogenicidade
14.
J Comp Neurol ; 527(10): 1706-1719, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30680733

RESUMO

Although initial observations of infections with the Zika virus describe a mild illness, more recent reports show that infections by Zika result in neurotropism. In 2015, substantial congenital malformations were observed, with numerous infants born with microcephaly in Brazil. To study the underlying mechanism and effects of the disease, it is critical to find suitable animal models. Rodents lack an immune system parallel to humans and also have lissencephalic brains, which are likely to react differently to infections. As the smallest gyrencephalic mammal, ferrets may provide an important animal model to study the Zika virus, as their brains share many characteristics with humans. To evaluate the prospect of using ferrets to study Zika virus infection, we injected seven pregnant jills with the PR strain subcutaneously on gestational day 21, corresponding to the initiation of corticogenesis. These injections resulted in mixed effects. Two animals died of apparent infection, and all kits were resorbed in another animal that did not die. The other four animals remained pregnant until gestational day 40, when the kits were delivered by caesarian section. We evaluated the animals using CT, MRI, diffusion tensor imaging, and immunohistochemistry. The kits displayed a number of features compatible with an infection that impacted both the brain and skull. The outcomes, however, were variable and differed within and across litters, which ranged from the absence of observable abnormalities to prominent changes, suggesting differential vulnerability of kits to infection by the Zika virus or to subsequent mechanisms of neurodevelopmental disruption.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Infecção por Zika virus/patologia , Animais , Animais Recém-Nascidos , Furões
15.
J Neurochem ; 106(6): 2272-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18819190

RESUMO

The mammalian telencephalon, which comprises the cerebral cortex, olfactory bulb, hippocampus, basal ganglia, and amygdala, is the most complex and intricate region of the CNS. It is the seat of all higher brain functions including the storage and retrieval of memories, the integration and processing of sensory and motor information, and the regulation of emotion and drive states. In higher mammals such as humans, the telencephalon also governs our creative impulses, ability to make rational decisions, and plan for the future. Despite its massive complexity, exciting work from a number of groups has begun to unravel the developmental mechanisms for the generation of the diverse neural cell types that form the circuitry of the mature telencephalon. Here, we review our current understanding of four aspects of neural development. We first begin by providing a general overview of the broad developmental mechanisms underlying the generation of neuronal and glial cell diversity in the telencephalon during embryonic development. We then focus on development of the cerebral cortex, the most complex and evolved region of the brain. We review the current state of understanding of progenitor cell diversity within the cortical ventricular zone and then describe how lateral signaling via the Notch-Delta pathway generates specific aspects of neural cell diversity in cortical progenitor pools. Finally, we review the signaling mechanisms required for development, and response to injury, of a specialized group of cortical stem cells, the radial glia, which act both as precursors and as migratory scaffolds for newly generated neurons.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neuroglia/citologia , Neurônios/citologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Telencéfalo/citologia
16.
Front Neurol ; 9: 82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527187

RESUMO

The global public health concern is heightened over the increasing number of emerging viruses, i.e., newly discovered or previously known that have expanded into new geographical zones. These viruses challenge the health-care systems in sub-Saharan Africa (SSA) countries from which several of them have originated and been transmitted by insects worldwide. Some of these viruses are neuroinvasive, but have been relatively neglected by neuroscientists. They may provide experiments by nature to give a time window for exposure to a new virus within sizeable, previously non-infected human populations, which, for instance, enables studies on potential long-term or late-onset effects on the developing nervous system. Here, we briefly summarize studies on the developing brain by West Nile, Zika, and Chikungunya viruses, which are mosquito-borne and have spread worldwide out of SSA. They can all be neuroinvasive, but their effects vary from malformations caused by prenatal infections to cognitive disturbances following perinatal or later infections. We also highlight Ebola virus, which can leave surviving children with psychiatric disturbances and cause persistent infections in the non-human primate brain. Greater awareness within the neuroscience community is needed to emphasize the menace evoked by these emerging viruses to the developing brain. In particular, frontline neuroscience research should include neuropediatric follow-up studies in the field on long-term or late-onset cognitive and behavior disturbances or neuropsychiatric disorders. Studies on pathogenetic mechanisms for viral-induced perturbations of brain maturation should be extended to the vulnerable periods when neurocircuit formations are at peaks during infancy and early childhood.

17.
Front Neurosci ; 12: 573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174584

RESUMO

Mild traumatic brain injury (mTBI) is highly prevalent but lacks both research tools with adequate sensitivity to detect cellular alterations that accompany mild injury and pre-clinical models that are able to robustly mimic hallmark features of human TBI. To address these related challenges, high-resolution diffusion tensor MRI (DTI) analysis was performed in a model of mild TBI in the ferret - a species that, unlike rodents, share with humans a gyrencephalic cortex and high white matter (WM) volume. A set of DTI image analysis tools were optimized and implemented to explore key features of DTI alterations in ex vivo adult male ferret brains (n = 26), evaluated 1 day to 16 weeks after mild controlled cortical impact (CCI). Using template-based ROI analysis, lesion overlay mapping and DTI-driven tensor-based morphometry (D-TBM) significant differences in DTI and morphometric values were found and their dependence on time after injury evaluated. These observations were also qualitatively compared with immunohistochemistry staining of neurons, astrocytes, and microglia in the same tissue. Focal DTI abnormalities including reduced cortical diffusivity were apparent in 12/13 injured brains with greatest lesion extent found acutely following CCI by ROI overlay maps and reduced WM FA in the chronic period was observed near to the CCI site (ANOVA for FA in focal WM: time after CCI p = 0.046, brain hemisphere p = 0.0012) often in regions without other prominent MRI abnormalities. Global abnormalities were also detected, especially for WM regions, which demonstrated reduced diffusivity (ANOVA for Trace: time after CCI p = 0.007) and atrophy that appeared to become more extensive and bilateral with longer time after injury (ANOVA for D-TBM Log of the Jacobian values: time after CCI p = 0.007). The findings of this study extend earlier work in rodent models especially by evaluation of focal WM abnormalities that are not influenced by partial volume effects in the ferret. There is also substantial overlap between DTI and morphometric findings in this model and those from human studies of mTBI implying that the combination of DTI tools with a human-similar model system can provide an advantageous and informative approach for mTBI research.

18.
J Neurosci Methods ; 285: 82-96, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28499842

RESUMO

BACKGROUND: Although rodent TBI studies provide valuable information regarding the effects of injury and recovery, an animal model with neuroanatomical characteristics closer to humans may provide a more meaningful basis for clinical translation. The ferret has a high white/gray matter ratio, gyrencephalic neocortex, and ventral hippocampal location. Furthermore, ferrets are amenable to behavioral training, have a body size compatible with pre-clinical MRI, and are cost-effective. NEW METHODS: We optimized the surgical procedure for controlled cortical impact (CCI) using 9 adult male ferrets. We used subject-specific brain/skull morphometric data from anatomical MRIs to overcome across-subject variability for lesion placement. We also reflected the temporalis muscle, closed the craniotomy, and used antibiotics. We then gathered MRI, behavioral, and immunohistochemical data from 6 additional animals using the optimized surgical protocol: 1 control, 3 mild, and 1 severely injured animals (surviving one week) and 1 moderately injured animal surviving sixteen weeks. RESULTS: The optimized surgical protocol resulted in consistent injury placement. Astrocytic reactivity increased with injury severity showing progressively greater numbers of astrocytes within the white matter. The density and morphological changes of microglia amplified with injury severity or time after injury. Motor and cognitive impairments scaled with injury severity. COMPARISON WITH EXISTING METHOD(S): The optimized surgical methods differ from those used in the rodent, and are integral to success using a ferret model. CONCLUSIONS: We optimized ferret CCI surgery for consistent injury placement. The ferret is an excellent animal model to investigate pathophysiological and behavioral changes associated with TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Neocórtex/patologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Mapeamento Encefálico , Proteínas de Ligação ao Cálcio , Craniotomia , Proteínas de Ligação a DNA/metabolismo , Comportamento Exploratório/fisiologia , Furões , Marcha/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Proteínas dos Microfilamentos , Neocórtex/diagnóstico por imagem , Desempenho Psicomotor , Reconhecimento Psicológico/fisiologia , Índices de Gravidade do Trauma
19.
J Neurosci ; 25(37): 8498-504, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16162931

RESUMO

Radial glia are integral components of the developing neocortex. During corticogenesis, they form an important scaffold for neurons migrating into the cortical plate. Recent attention has focused on neuregulin (NRG1), acting through erbB receptors, in maintaining their morphology. We developed a model of developmental radial glial disruption by delivering an antimitotic [methylazoxy methanol (MAM)] to pregnant ferrets on embryonic day 24 (E24). We previously found that normal ferret cortex contains a soluble factor capable of realigning the disorganized radial glia back toward their normal morphology. Characterization of the reorganizing activity in normal cortex demonstrated that the probable factor mediating these responses was a 30-50 kDa protein. To test whether this endogenous soluble factor was NRG1, we used organotypic cultures of E24 MAM-treated ferret neocortex supplemented with the endogenous factor obtained from normal cortical implants, exogenous NRG1beta, antibodies that either blocked or stimulated erbB receptors, or a soluble erbB subtype that binds to available NRG1. We report that exogenous NRG1 or antibodies that stimulate erbB receptors dramatically improve the morphology of disrupted radial glia, whereas blockade of NRG1-erbB signaling prevents the radial glial repair. Our results suggest that NRG1 is an endogenous factor in ferret neocortex capable of repairing damaged radial glia and that it acts via one or more erbB receptors.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Neurregulinas/fisiologia , Neuroglia/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Furões , Técnicas In Vitro , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Teratogênicos
20.
Neurotoxicology ; 53: 31-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582457

RESUMO

Prenatal exposure to carbon monoxide (CO) disrupts brain development, however little is known about effects on neocortical maturation. We exposed pregnant mice to CO from embryonic day 7 (E7) until birth. To study the effect of CO on neuronal migration into the neocortex we injected BrdU during corticogenesis and observed misplaced BrdU+ cells. The majority of cells not in their proper layer colocalized with GAD65/67, suggesting impairment of interneuron migration; interneuron subtypes were also affected. We subsequently followed interneuron migration from E15 organotypic cultures of mouse neocortex exposed to CO; the leading process length of migrating neurons diminished. To examine an underlying mechanism, we assessed the effects of CO on the cellular cascade mediating the cytoskeletal protein vasodilator-stimulated phosphoprotein (VASP). CO exposure resulted in decreased cGMP and in a downstream target, phosphorylated VASP. Organotypic cultures grown in the presence of the phosphodiesterase inhibitor IBMX resulted in a recovery of the leading processes. These data support the idea that CO acts as a signaling molecule and impairs function and neuronal migration by acting through the CO/NO-cGMP pathway. In addition, treated mice demonstrated functional impairment in behavioral tests.


Assuntos
Antimetabólitos/toxicidade , Monóxido de Carbono/toxicidade , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Interneurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fatores Etários , Animais , Bromodesoxiuridina/metabolismo , Moléculas de Adesão Celular/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA