Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 52: 110-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851627

RESUMO

Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.


Assuntos
Mitocôndrias/fisiologia , Células-Tronco/fisiologia , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Cell Prolif ; 56(5): e13459, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37177849

RESUMO

During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage-specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh-p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self-renewal and rescued the pro-senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let-7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self-renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A-driven hypoxic response in Hypoxia Inducible Factor-1α (HIF1α) and glycolysis, and thus LTS progenitor self-renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing-related muscle degeneration.


Assuntos
Células-Tronco Adultas , Rejuvenescimento , Proteína Supressora de Tumor p53/metabolismo , Diferenciação Celular , Células-Tronco Adultas/metabolismo
3.
Trends Endocrinol Metab ; 27(3): 132-141, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811207

RESUMO

The Lin28/let-7 molecular switch has emerged as a central regulator of growth signaling pathways and metabolic enzymes. Initially discovered to regulate developmental timing in the nematode, the Lin28/let-7 pathway of RNA regulation has gained prominence for its role in mammalian stem cells, cancer cells, tissue development, and aging. By regulating RNAs, the pathway coordinates cellular growth and cellular metabolism to influence metabolic physiology. Here, we review this regulatory mechanism and its impact on cancers, which reactivate Lin28, cardiovascular diseases, which implicate let-7, human genome-wide association studies (GWAS) of growth, and metabolic diseases, which implicate the Lin28/let-7 pathway. We also highlight questions relating to Barker's Hypothesis and the potential actions of the Lin28/let-7 pathway on programming long-lasting epigenetic effects.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Envelhecimento/patologia , Animais , Carcinogênese , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Longevidade/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas de Ligação a RNA/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia
4.
Nat Med ; 22(6): 666-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135739

RESUMO

Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.


Assuntos
Caquexia/metabolismo , Ácidos Graxos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neoplasias/metabolismo , Oxirredução , Células-Tronco/metabolismo , Idoso , Animais , Western Blotting , Caquexia/etiologia , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Metabolômica , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Neoplasias/complicações , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA