Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Glob Chang Biol ; 29(2): 391-403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203244

RESUMO

Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.


Assuntos
Microbiota , Rios , Cidades , Água , China
2.
J Phycol ; 56(6): 1457-1467, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557638

RESUMO

The poorly understood filamentous cyanobacterium Pseudanabaena is commonly epiphytic on Microcystis colonies and their abundances are often highly correlated during blooms. The response and adaptation of Microcystis to iron limitation have been extensively studied, but the strategies Pseudanabaena uses to respond to iron limitation are largely unknown. Here, physiological responses to iron limitation were compared between one Pseudanabaena and two Microcystis strains grown under different light intensities. The results showed that low-intensity light exacerbated, but high-intensity light alleviated, the negative effect of iron limitation on Pseudanabaena growth relative to two Microcystis strains. It was found that robust light-harvesting and photosynthetic efficiency allowed adaptation of Pseudanabaena to low light availability relative to two Microcystis strains only during iron sufficiency. The results also indicated that a larger investment in the photosynthetic antenna probably contributed to light/iron co-limitation of Pseudanabaena relative to two Microcystis strains under both light and iron limitation. Furthermore, the lower antenna pigments/chlorophyll a ratio and photosynthetic efficiency, and higher nonphotochemical quenching and saturation irradiance provided Pseudanabaena photoadaptation and photoprotection advantages over the two Microcystis strains under the high-light condition. The lower investment in antenna pigments of Pseudanabaena than the two Microcystis strains under high-light intensity is likely an efficient strategy for both saving iron quotas and decreasing photosensitivity. Therefore, when compared with Microcystis, the high plasticity of antenna pigments, along with the excellent photoadaptation and photoprotection ability of Pseudanabaena, probably ensures its ecological success under iron limitation when light is sufficient.


Assuntos
Cianobactérias , Microcystis , Clorofila A , Ferro , Fotossíntese
3.
Ecotoxicol Environ Saf ; 203: 111025, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888593

RESUMO

We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 µg l-1), enrofloxacin (ENR; 2 µg l-1), and oxytetracycline (OXY; 1 µg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.


Assuntos
Amoxicilina/toxicidade , Araceae/efeitos dos fármacos , Enrofloxacina/toxicidade , Oxitetraciclina/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Enrofloxacina/análise , Enrofloxacina/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxitetraciclina/análise , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/análise
4.
Microb Ecol ; 77(2): 277-287, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29951743

RESUMO

Bacterioplankton are both primary producers and primary consumers in aquatic ecosystems, which were commonly investigated to reflect environmental changes, evaluate primary productivity, and assess biogeochemical cycles. However, there is relatively less understanding of their responses to anthropogenic disturbances such as constructions of dams/tunnels/roads that may significantly affect the aquatic ecosystem. To fill such gap, this study focused on the bacterioplankton communities' diversity and turnover during a tunnel construction across an urban lake (Lake Donghu, Wuhan, China), and five batches of samples were collected within 2 months according to the tunnel construction progress. Results indicated that both resources and predator factors contributed significant to the variations of bacterioplankton communities, but the closed area and open areas showed different diversity patterns due to the impacts of tunnel construction. Briefly, the phytoplankton, TN, and TP in water were still significantly correlated with the bacterioplankton composition and diversity like that in normal conditions. Additionally, the organic matter, TN, and NH4-N in sediments also showed clear effects on the bacterioplankton. However, the predator effects on the bacterioplankton in the closed-off construction area mainly derived from large zooplankton (i.e., cladocerans), while small zooplankton such as protozoa and rotifers are only responsible for weak predator effects on the bacterioplankton in the open areas. Further analysis about the ecological driving forces indicated that the bacterioplankton communities' turnover during the tunnel construction was mainly governed by the homogeneous selection due to similar environments within the closed area or the open areas at two different stages. This finding suggests that bacterioplankton communities can quickly adapt to the environmental modifications resulting from tunnel construction activities. This study can also give references to enhance our understanding on bacterioplankton communities' response to ecological and environmental changes due to intensification of construction and urbanization in and around lake ecosystems.


Assuntos
Bactérias/isolamento & purificação , Lagos/microbiologia , Plâncton/isolamento & purificação , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , China , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Lagos/parasitologia , Filogenia , Plâncton/classificação , Plâncton/genética , Zooplâncton/classificação , Zooplâncton/genética , Zooplâncton/isolamento & purificação
5.
Curr Microbiol ; 75(9): 1240-1246, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29802418

RESUMO

The 16S rRNA gene is one of the most commonly used molecular markers for estimating bacterial diversity during the past decades. However, there is no consistency about the sequencing depth (from thousand to millions of sequences per sample), and the clustering methods used to generate OTUs may also be different among studies. These inconsistent premises make effective comparisons among studies difficult or unreliable. This study aims to examine the necessary sequencing depth and clustering method that would be needed to ensure a stable diversity patterns for studying fish gut microbiota. A total number of 42 samples dataset of Siniperca chuatsi (carnivorous fish) gut microbiota were used to test how the sequencing depth and clustering may affect the alpha and beta diversity patterns of fish intestinal microbiota. Interestingly, we found that the sequencing depth (resampling 1000-11,000 per sample) and the clustering methods (UPARSE and UCLUST) did not bias the estimates of the diversity patterns during the fish development from larva to adult. Although we should acknowledge that a suitable sequencing depth may differ case by case, our finding indicates that a shallow sequencing such as 1000 sequences per sample may be also enough to reflect the general diversity patterns of fish gut microbiota. However, we have shown in the present study that strict pre-processing of the original sequences is required to ensure reliable results. This study provides evidences to help making a strong scientific choice of the sequencing depth and clustering method for future studies on fish gut microbiota patterns, but at the same time reducing as much as possible the costs related to the analysis.


Assuntos
Bactérias/genética , Biodiversidade , Análise por Conglomerados , Peixes/microbiologia , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bactérias/classificação , Biologia Computacional/normas , DNA Bacteriano/genética , RNA Ribossômico 16S , Análise de Sequência de DNA/normas
6.
J Phycol ; 53(2): 425-436, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28164281

RESUMO

Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet-B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron-deficient cyanobacteria respond to UV-B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV-B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV-B radiation under iron-deficient conditions, but were less affected under iron-replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV-B radiation under iron-deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV-B radiation under iron-replete conditions. These results indicate that iron-deficient cyanobacteria are more susceptible to enhanced UV-B radiation. Therefore, UV-B radiation probably plays an important role in influencing primary productivity in iron-deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron-deficient regions around the world.


Assuntos
Cianobactérias/metabolismo , Microcystis/metabolismo , Microcystis/efeitos da radiação , Synechococcus/metabolismo , Raios Ultravioleta , Cianobactérias/efeitos da radiação , Fotossíntese/fisiologia , Synechococcus/efeitos da radiação
7.
J Phycol ; 52(1): 105-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26987092

RESUMO

Microcystis sp., especially in its colonial form, is a common dominant species during cyanobacterial blooms in many iron-deficient water bodies. It is still not entirely clear, however, how the colonial forms of Microcystis acclimate to iron-deficient habitats, and the responses of unicellular and colonial forms to iron-replete and iron-deficient conditions were examined here. Growth rates and levels of photosynthetic pigments declined to a greater extent in cultures of unicellular Microcystis than in cultures of the colonial form in response to decreasing iron concentrations, resulting in the impaired photosynthetic performance of unicellular Microcystis as compared to colonial forms as measured by variable fluorescence and photosynthetic oxygen evolution. These results indicate that the light-harvesting ability and photosynthetic capacity of colonial Microcystis was less affected by iron deficiency than the unicellular form. The carotenoid contents and nonphotochemical quenching of colonial Microcystis were less reduced than those of the unicellular form under decreasing iron concentrations, indicating that the colonial morphology enhanced photoprotection and acclimation to iron-deficient conditions. Furthermore, large amounts of iron were detected in the capsular polysaccharides (CPS) of the colonies, and more iron was found to be attached to the colonial Microcystis CPS under decreasing iron conditions as compared to unicellular cultures. These results demonstrated that colonial Microcystis can acclimate to iron deficiencies better than the unicellular form, and that CPS plays an important role in their acclimation advantage in iron-deficient waters.


Assuntos
Ferro/metabolismo , Lagos/microbiologia , Microcystis/metabolismo , Polissacarídeos Bacterianos/metabolismo , Carotenoides/metabolismo , China , Clorofila/metabolismo , Clorofila A , Microcystis/citologia , Microcystis/fisiologia , Fotossíntese/fisiologia , Ficocianina/metabolismo , Polissacarídeos Bacterianos/química
8.
Ecotoxicology ; 25(10): 1822-1831, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670665

RESUMO

Atrazine is an herbicide frequently detected in watercourses that can affect the phytoplankton community, thus impacting the whole food chain. This study aims, firstly, to measure the sensitivity of monocultures of the green alga Scenedemus obliquus and toxic and non-toxic strains of the cyanobacteria Microcystis aeruginosa before, during and after a 30-day acclimation period to 0.1 µM of atrazine. Secondly, the sensitivity of S. obliquus and M. aeruginosa to atrazine in mixed cultures was evaluated. Finally, the ability of these strains to remove atrazine from the media was measured. We demonstrated that both strains of M. aeruginosa had higher growth rate-based EC50 values than S. obliquus when exposed to atrazine, even though their photosynthesis-based EC50 values were lower. After being exposed to 0.1 µM of atrazine for 1 month, only the photosynthesis-based EC50 of S. obliquus increased significantly. In mixed cultures, the growth rate of the non-toxic strain of M. aeruginosa was higher than S. obliquus at high concentrations of atrazine, resulting in a ratio of M. aeruginosa to total cell count of 0.6. This lower sensitivity might be related to the higher growth rate of cyanobacteria at low light intensity. Finally, a negligible fraction of atrazine was removed from the culture media by S. obliquus or M. aeruginosa over 6 days. These results bring new insights on the acclimation of some phytoplankton species to atrazine and its effect on the competition between S. obliquus and M. aeruginosa in mixed cultures.


Assuntos
Atrazina/toxicidade , Microcystis/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Aclimatação , Atrazina/metabolismo , Biodegradação Ambiental , Herbicidas , Microcystis/fisiologia , Fotossíntese , Fitoplâncton/efeitos dos fármacos , Scenedesmus/fisiologia , Poluentes Químicos da Água/metabolismo
9.
Pestic Biochem Physiol ; 130: 65-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27155486

RESUMO

We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.


Assuntos
Clorofila/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Organofosfonatos/farmacologia , Fotossíntese/efeitos dos fármacos , Salix/efeitos dos fármacos , Glicina/farmacologia , Isoxazóis , Oxirredução/efeitos dos fármacos , Salix/metabolismo , Tetrazóis , Glifosato
10.
J Exp Bot ; 65(17): 4691-703, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039071

RESUMO

It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Organofosfonatos/toxicidade , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Isoxazóis , Organofosfonatos/metabolismo , Tetrazóis , Glifosato
11.
Environ Pollut ; 356: 124206, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795819

RESUMO

It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.

12.
J Hazard Mater ; 470: 134202, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581873

RESUMO

The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum ß-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.


Assuntos
COVID-19 , Farmacorresistência Bacteriana , Rios , COVID-19/epidemiologia , Brasil/epidemiologia , Humanos , Rios/microbiologia , Antibacterianos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Pandemias
13.
Environ Pollut ; 357: 124376, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897277

RESUMO

We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.

14.
Sci Total Environ ; 892: 164309, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236443

RESUMO

Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.


Assuntos
COVID-19 , Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Humanos , Ecossistema , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/análise , Hidroxicloroquina/farmacologia , Azitromicina/toxicidade , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
15.
Aquat Toxicol ; 254: 106323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435012

RESUMO

Polar ecosystems play an important role in global primary production. Microalgae have adaptations that enable them to live under low temperature environments where irradiance and day length change drastically. Their adaptations, leading to different ecophysiological characteristics relative to temperate species, could also alter their sensitivity to pollutants such as pesticides. This study's objective was to understand how different ecophysiological characteristics influence the response of Arctic phytoplankton to pesticides in relation to the responses of their temperate counterparts. Ecophysiological endpoints were related to growth, cell biovolume, pigment content, photosynthetic activity, photoprotective mechanisms (NPQ, antioxidant enzyme activities), and reactive oxygen species (ROS) content. The Arctic species Micromonas polaris was more resistant to atrazine and simazine than its temperate counterpart Micromonas bravo. However, the other Arctic species Chaetoceros neogracilis was more sensitive to these herbicides than its temperate counterpart Chaetoceros neogracile. With respect to two other pesticide toxicity, both temperate microalgae were more sensitive to trifluralin, while Arctic microalgae were more sensitive to chlorpyrifos (insecticide). All differences could be ascribed to differences in the eco-physiological features of the two microalgal groups, which can be explained by cell size, pigment content, ROS content and protective mechanisms (NPQ and antioxidant enzymes).


Assuntos
Clorófitas , Microalgas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Espécies Reativas de Oxigênio , Antioxidantes , Ecossistema , Poluentes Químicos da Água/toxicidade
16.
Environ Pollut ; 333: 121985, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301455

RESUMO

In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.


Assuntos
Atrazina , Clorófitas , Herbicidas , Microalgas , Poluentes Químicos da Água , Humanos , Herbicidas/toxicidade , Simazina/farmacologia , Ecossistema , Poluentes Químicos da Água/toxicidade
17.
Environ Pollut ; 329: 121672, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080511

RESUMO

We investigated physiological responses of Lemna minor plants and their capacity to remove tenofovir (TNF; 412 ng l-1), lamivudine (LMV; 5428 ng l-1) and/or efavirenz (EFV; 4000 ng l-1) from water through phytoremediation. In addition, the toxicological safety of water contaminated with these drugs after treatment with L. minor plants to photosynthetic microorganisms (Synechococcus elongatus and Chlorococcum infusionum) was evaluated. The tested environmental representative concentrations of drugs did not have a toxic effect on L. minor, and their tolerance mechanisms involved an increase in the activity of P450 and antioxidant enzymes (catalase and ascorbate peroxidase). L. minor accumulated significant quantities of TNF, LMV and EFV from the media (>70%), and the interactive effect of LMV and EFV increased EFV uptake by plants submitted to binary or tertiary mixture of drugs. Photosynthetic microorganisms exposed to TNF + LMV + EFV showed toxicological symptoms which were not observed when exposed to contaminated water previously treated with L. minor. An increased H2O2 concentrations but no oxidative damage in S. elongatus cells exposed to non-contaminated water treated with L. minor was observed. Due to its capacity to tolerate and reclaim anti-HIV drugs, L. minor plants must be considered in phytoremediation programs. They constitute a natural-based solution to decrease environmental contamination by anti-HIV drugs and toxicological effects of these pharmaceuticals to nontarget organisms.


Assuntos
Fármacos Anti-HIV , Araceae , Poluentes Químicos da Água , Fármacos Anti-HIV/farmacologia , Biodegradação Ambiental , Peróxido de Hidrogênio/farmacologia , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
18.
Environ Sci Pollut Res Int ; 30(59): 124374-124381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945963

RESUMO

This study aimed (1) to assess the ability of collembolans Folsomia candida to avoid soils contaminated with three seed dressing insecticides imidacloprid, clothianidin, and fipronil; (2) to assess the effects of the insecticides on collembolans' locomotion behavior; (3) to check if changes in the locomotion behavior would explain the avoidance/preference responses; and (4) to evaluate the possibility to use locomotion behavior as toxicity biomarker of the tested insecticides. Avoidance and locomotion behavior assays with collembolans F. candida were performed with commercial seed dressing formulations of three insecticides (imidacloprid, clothianidin, and fipronil). Results showed no avoidance behavior at any concentration, while a "preference" was observed with increasing concentrations of the three tested insecticides. Significant reductions in the locomotion of exposed collembolans were observed at ≥ 1 mg kg-1 for imidacloprid (18-38%) and fipronil (29-58%) and ≥ 4 mg kg-1 for clothianidin (10-47%). At the higher insecticide concentrations, the collembolans had their trajectories restricted to smaller areas, with a tendency for circular movements. Our results confirm that the "preference" for contaminated soils with neurotoxic substances is likely due to locomotion inhibition impairing the ability of organisms to escape. This effect highlights that only avoidance assays may be not sufficient to assure the safety of some substances and confirm the potential of locomotion behavior as a sensitive toxicity biomarker for neurotoxic insecticides.


Assuntos
Artrópodes , Inseticidas , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Locomoção , Solo , Biomarcadores
19.
Chemosphere ; 307(Pt 2): 135796, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35917978

RESUMO

We investigated the occurrence and risk assessment of three anti-HIV drugs [(tenofovir (TNF), lamivudine (LMV) and efavirenz (EFV)] in urban rivers from Curitiba (Brazil), as well as the individual and combined effects of their environmental representative concentrations on the freshwater periphytic species Synechococcus elongatus (Cyanobacteria) and Chlorococcum infusionum (Chlorophyta). The three studied drugs, except TNF, were found in 100% of the samples, and concentrations in samples ranged from 165 to 412 ng TNF L-1, 173-874 ng LMV L-1 and 13-1250 ng EFV L-1. Bioassays using artificial contaminated water showed that at environmental concentrations, TNF and LMV did not represent environmental risks to the studied photosynthetic organisms. However, EFV was shown to be toxic, affecting photosynthesis, respiration, and oxidative metabolism. The studied drugs demonstrated interactive effects. Indeed, when submitted to the combination of TNF and LMV, decreased photosynthesis was observed in C. infusionum cells. Moreover, the toxic effects of EFV were amplified in both species when TNF and/or LMV were added to the media. The simultaneous presence of TNF, LMV and EFV in environmental matrices associated with their interactive effects, lead to increased toxicological effects of water contaminated by anti-HIV drugs and thus to an ecological threat to photosynthetic microorganisms.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Alcinos/farmacologia , Alcinos/uso terapêutico , Benzoxazinas , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Lamivudina/farmacologia , Lamivudina/uso terapêutico , Fotossíntese , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Água/farmacologia
20.
Photosynth Res ; 107(2): 151-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21188526

RESUMO

In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0-4.62 µM Cd(2+). By evaluating the half time of fluorescence transients O-J-I-P at different temperatures (20-30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O-J-I-P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.


Assuntos
Cádmio/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Chlamydomonas reinhardtii/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Cinética , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA