Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0366823, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162551

RESUMO

Latilactobacillus sakei is an important bacterial species used as a starter culture for fermented foods; however, two subspecies within this species exhibit different properties in the foods. Matrix-assisted laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) is the gold standard for microbial fingerprinting. However, the resolution power is down to the species level. This study was to combine MALDI-TOF mass spectra and machine learning to develop a new method to identify two L. sakei subspecies (L. sakei subsp. sakei and L. sakei subsp. carnosus) and non-L. sakei species. Totally, 227 strains were collected, with 908 spectra obtained via on- and off-plate protein extraction. Only 68.7% of strains were correctly identified at the subspecies level in the Biotyper database; however, a high level of performance was observed from the machine learning models. Partial least squares-discriminant analysis (PLS-DA), principal component analysis-K-nearest neighbor (PCA-KNN), and support vector machine (SVM) demonstrated 0.823, 0.914, and 0.903 accuracies, respectively, whereas the random forest (RF) achieved an accuracy of 0.954, with an area under the receiver operating characteristic (AUROC) curve of 0.99, outperforming the other algorithms in distinguishing the subspecies. The machine learning proved to be a promising technique for the rapid and high-resolution classification of L. sakei subspecies using MALDI-TOF MS. IMPORTANCE: Latilactobacillus sakei plays a significant role in the realm of food bacteria. One particular subspecies of L. sakei is employed as a protective agent during food fermentation, whereas another strain is responsible for food spoilage. Hence, it is crucial to precisely differentiate between the two subspecies of L. sakei. In this study, machine learning models based on protein mass peaks were developed for the first time to distinguish L. sakei subspecies. Furthermore, the efficacy of three commonly used machine learning algorithms for microbial classification was evaluated. Our results provide the foundation for future research on developing machine learning models for the classification of microbial species or subspecies. In addition, the developed model can be used in the food industry to monitor L. sakei subspecies in fermented foods in a time- and cost-effective method for food quality and safety.

2.
Front Plant Sci ; 14: 1301490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164248

RESUMO

The maintenance of ion balance in closed hydroponic solutions is essential to improve the crop quality and recycling efficiency of nutrient solutions. However, the absence of robust ion sensors for key ions such as P and Mg and the coupling of ions in fertilizer salts render it difficult to effectively manage ion-specific nutrient solutions. Although ion-specific dosing algorithms have been established, their effectiveness has been inadequately explored. In this study, a decision-tree-based dosing algorithm was developed to calculate the optimal volumes of individual nutrient stock solutions to be supplied for five major nutrient ions, i.e., NO3, K, Ca, P, and Mg, based on the concentrations of NO3, K, and Ca and remaining volume of the recycled nutrient solution. In the performance assessment based on five nutrient solution samples encompassing the typical concentration ranges for leafy vegetable cultivation, the ion-selective electrode array demonstrated feasible accuracies, with root mean square errors of 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. In a five-step replenishment test involving varying target concentrations and nutrient solution volumes, the system formulated nutrient solutions according to the specified targets, exhibiting average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7% for the Ca, K, and NO3 concentrations and volume of the nutrient solution, respectively. Furthermore, the decision tree method helped reduce the total fertilizer injections and carbon emissions by 12.8% and 20.6% in the stepwise test, respectively. The findings demonstrate that the decision-tree-based dosing algorithm not only enables more efficient reuse of nutrient solution compared to the existing simplex method but also confirms the potential for reducing carbon emissions, indicating the possibility of sustainable agricultural development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA