Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026614

RESUMO

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

2.
Nano Lett ; 21(10): 4305-4313, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33970636

RESUMO

The family of group IV-VI monochalcogenides has an atomically puckered layered structure, and their atomic bond configuration suggests the possibility for the realization of various polymorphs. Here, we report the synthesis of the first hexagonal polymorph from the family of group IV-VI monochalcogenides, which is conventionally orthorhombic. Recently predicted four-atomic-thick hexagonal GeSe, so-called γ-GeSe, is synthesized and clearly identified by complementary structural characterizations, including elemental analysis, electron diffraction, high-resolution transmission electron microscopy imaging, and polarized Raman spectroscopy. The electrical and optical measurements indicate that synthesized γ-GeSe exhibits high electrical conductivity of 3 × 105 S/m, which is comparable to those of other two-dimensional layered semimetallic crystals. Moreover, γ-GeSe can be directly grown on h-BN substrates, demonstrating a bottom-up approach for constructing vertical van der Waals heterostructures incorporating γ-GeSe. The newly identified crystal symmetry of γ-GeSe warrants further studies on various physical properties of γ-GeSe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA