Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Comput Biol ; 17(12): e1009644, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871315

RESUMO

Peristalsis, the coordinated contraction-relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. Understanding of the integrative role of neurotransmission and intercellular coupling in the propagation of an entrained gastric slow-wave, important for understanding motility disorders, however, remains incomplete. Using a computational framework constituted of a novel gastric motility network (GMN) model we address the hypothesis that engaging biological oscillators (i.e., ICCs) by constitutive gap junction coupling mechanisms and enteric neural innervation activated signals can confer a robust entrained gastric slow-wave. We demonstrate that while a decreasing enteric neural innervation gradient that modulates the intracellular IP3 concentration in the ICCs can guide the aboral slow-wave propagation essential for peristalsis, engaging ICCs by recruiting the exchange of second messengers (inositol trisphosphate (IP3) and Ca2+) ensures a robust entrained longitudinal slow-wave, even in the presence of biological variability in electrical coupling strengths. Our GMN with the distinct intercellular coupling in conjunction with the intracellular feedback pathways and a rostrocaudal enteric neural innervation gradient allows gastric slow waves to oscillate with a moderate range of frequencies and to propagate with a broad range of velocities, thus preventing decoupling observed in motility disorders. Overall, the findings provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach, offer directions for future experiments and theoretical work, and can potentially aid in the design of new interventional pharmacological and neuromodulation device treatments for addressing gastric motility disorders.


Assuntos
Relógios Biológicos/fisiologia , Trato Gastrointestinal , Músculo Liso , Peristaltismo/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Cálcio/metabolismo , Biologia Computacional , Sinapses Elétricas/fisiologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Células Intersticiais de Cajal/fisiologia , Potenciais da Membrana/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Liso/inervação , Músculo Liso/fisiologia
2.
Am J Occup Ther ; 71(3): 7103320010P1-7103320010P12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28422639

RESUMO

Approximately 53 million Americans live with a disability. For decades, the National Institutes of Health (NIH) has been conducting and supporting research to discover new ways to minimize disability and enhance the quality of life of people with disabilities. After the passage of the Americans With Disabilities Act, NIH established the National Center for Medical Rehabilitation Research, with the goal of developing and implementing a rehabilitation research agenda. Currently, 17 institutes and centers at NIH invest more than $500 million per year in rehabilitation research. Recently, the director of NIH, Francis Collins, appointed a Blue Ribbon Panel to evaluate the status of rehabilitation research across institutes and centers. As a follow-up to the work of that panel, NIH recently organized a conference, "Rehabilitation Research at NIH: Moving the Field Forward." This report is a summary of the discussions and proposals that will help guide rehabilitation research at NIH in the near future.

3.
J Neurophysiol ; 113(7): 2666-75, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673734

RESUMO

Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI.


Assuntos
Tornozelo/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Modelos Biológicos , Contração Muscular , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adaptação Fisiológica , Animais , Simulação por Computador , Feminino , Marcha , Transtornos Neurológicos da Marcha/etiologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/complicações
4.
Front Neurosci ; 18: 1328540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435056

RESUMO

Novel bioelectronic medical devices that target neural control of visceral organs (e.g., liver, gut, spleen) or inflammatory reflex pathways are innovative class III medical devices like implantable cardiac pacemakers that are lifesaving and life-sustaining medical devices. Bringing innovative neurotechnologies early into the market and the hands of treatment providers would benefit a large population of patients inflicted with autonomic and chronic immune disorders. Medical device manufacturers and software developers widely use the Waterfall methodology to implement design controls through verification and validation. In the Waterfall methodology, after identifying user needs, a functional unit is fabricated following the verification loop (design, build, and verify) and then validated against user needs. Considerable time can lapse in building, verifying, and validating the product because this methodology has limitations for adjusting to unanticipated changes. The time lost in device development can cause significant delays in final production, increase costs, and may even result in the abandonment of the device development. Software developers have successfully implemented an Agile methodology that overcomes these limitations in developing medical software. However, Agile methodology is not routinely used to develop medical devices with implantable hardware because of the increased regulatory burden of the need to conduct animal and human studies. Here, we provide the pros and cons of the Waterfall methodology and make a case for adopting the Agile methodology in developing medical devices with physical components. We utilize a peripheral nerve interface as an example device to illustrate the use of the Agile approach to develop neurotechnologies.

5.
J Neuroeng Rehabil ; 10: 97, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23947694

RESUMO

BACKGROUND: Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. METHODS: 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. RESULTS: Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. CONCLUSIONS: Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.


Assuntos
Articulação do Tornozelo/fisiopatologia , Locomoção/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Articulação do Tornozelo/patologia , Atrofia , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Músculo Esquelético/patologia , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação
6.
Front Rehabil Sci ; 4: 1199722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484600

RESUMO

Introduction: Respiratory pacing is a promising alternative to traditional mechanical ventilation that has been shown to significantly increase the survival and quality of life after the neural control of the respiratory system has been compromised. However, current pacing approaches to achieve adequate ventilation tend to target only the diaphragm without pacing external intercostal muscles that are also activated during normal inspiration. Furthermore, the pacing paradigms do not allow for intermittent sighing, which carries an important physiological role. We hypothesized that simultaneous activation of the diaphragm and external intercostal muscles would improve the efficiency of respiratory pacing compared to diaphragm stimulation alone. Materials and Methods: We expanded an adaptive, closed-loop diaphragm pacing paradigm we had previously developed to include external intercostal muscle activation and sigh generation. We then investigated, using a rodent model for respiratory pacing, if simultaneous activation would delay the fatigability of the diaphragm during pacing and allow induction of appropriate sigh-like behavior in spontaneously breathing un-injured anesthetized rats (n = 8) with pacing electrodes implanted bilaterally in the diaphragm and external intercostal muscles, between 2nd and 3rd intercostal spaces. Results: With this novel pacing system, we show that fatigability of the diaphragm was lower when using combined muscle stimulation than diaphragm stimulation alone (p = 0.014) and that combined muscle stimulation was able to induce sighs with significantly higher tidal volumes compared to diaphragm stimulation alone (p = 0.014). Conclusion: Our findings demonstrate that simultaneous activation of the inspiratory muscles could be used as a suitable strategy to delay stimulation-induced diaphragmatic fatigue and to induce a sigh-like behavior that could improve respiratory health.

8.
J Spinal Cord Med ; 35(3): 162-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507026

RESUMO

BACKGROUND: Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. OBJECTIVE: To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. METHODS: The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength-duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. RESULTS: Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. CONCLUSIONS: This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries.


Assuntos
Terapia por Estimulação Elétrica/métodos , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/fisiopatologia
9.
J Neurophysiol ; 106(5): 2167-79, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21775715

RESUMO

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential (E(Cl(-))) of γ-aminobutyric acid A (GABA(A)) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and E(Cl(-)) of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in E(Cl(-)) by limiting PIC activation and self-sustained firing. Furthermore, GABA(A) currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABA(A) currents could provide treatment strategies for uncontrollable spasms.


Assuntos
Modelos Neurológicos , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Reflexo Anormal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Dendritos/fisiologia , Neurônios GABAérgicos/fisiologia , Humanos , Cinética , Potenciais da Membrana/fisiologia , Espasticidade Muscular/fisiopatologia , Receptores de GABA-A/fisiologia , Receptores de Glicina/fisiologia , Sinapses/fisiologia
10.
J Comput Neurosci ; 31(3): 625-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21526348

RESUMO

Under many conditions spinal motoneurons produce plateau potentials, resulting in self-sustained firing and providing a mechanism for translating short-lasting synaptic inputs into long-lasting motor output. During the acute-stage of spinal cord injury (SCI), the endogenous ability to generate plateaus is lost; however, during the chronic-stage of SCI, plateau potentials reappear with prolonged self-sustained firing that has been implicated in the development of spasticity. In this work, we extend previous modeling studies to systematically investigate the mechanisms underlying the generation of plateau potentials in motoneurons, including the influences of specific ionic currents, the morphological characteristics of the soma and dendrite, and the interactions between persistent inward currents and synaptic input. In particular, the goal of these computational studies is to explore the possible interactions between morphological and electrophysiological changes that occur after incomplete SCI. Model results predict that some of the morphological changes generally associated with the chronic-stage for some types of spinal cord injuries can cause a decrease in self-sustained firing. This and other computational results presented here suggest that the observed increases in self-sustained firing following some types of SCI may occur mainly due to changes in membrane conductances and changes in synaptic activity, particularly changes in the strength and timing of inhibition.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiologia , Animais , Compartimento Celular/fisiologia , Simulação por Computador/normas , Humanos , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
11.
J Neurophysiol ; 104(3): 1566-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592117

RESUMO

We report here the first direct measurements of persistent inward currents (PICs) in rat hindlimb motoneurons, obtained from ketamine-xylazine anesthetized rats during slow voltage ramps performed by single-electrode somatic voltage clamp. Most motoneurons expressed PICs and current-voltage (I-V) relations often contained a negative-slope region (NSR; 13/19 cells). PICs activated at -52.7 ± 3.89 mV, 9 mV negative to spike threshold. NSR onset was -44.2 ± 4.1 mV. PIC amplitudes were assessed by maximum inward currents measured relative to extrapolated leak current and to NSR-onset current. PIC conductance at potentials just positive to activation was assessed by the relative change in slope conductance (g(in)/g(leak)). PIC amplitudes varied widely; some exceeded 5 and 10 nA relative to current at NSR onset or leak current, respectively. PIC amplitudes did not vary significantly with input conductance, but PIC amplitudes normalized by recruitment current decreased with increasing input conductance. Similarly, g(in)/g(leak) decreased with increasing input conductance. Currents near resting potential on descending limbs of I-V relations were often outward, relative to ascending-limb currents. This residual outward current was correlated with increases in leak conductance on the descending limb and with input conductance. Excluding responses with accommodation, residual outward currents matched differences between recruitment and derecruitment currents, suggesting a role for residual outward current in frequency adaptation. Comparison of potentials for PIC activation and NSR onset with interspike trajectories during discharge demonstrated correspondence between PIC activation and frequency-current (f-I) range boundaries. Contributions of persistent inward and outward currents to motoneuron discharge characteristics are discussed.


Assuntos
Potenciais de Ação/fisiologia , Membro Posterior/fisiologia , Neurônios Motores/fisiologia , Animais , Feminino , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Long-Evans , Fatores de Tempo
12.
J Neurophysiol ; 104(3): 1549-65, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592119

RESUMO

The discharge properties of hindlimb motoneurons in ketamine-xylazine anesthetized rats were measured to assess contributions of persistent intrinsic currents to these characteristics and to determine their distribution in motoneuron pools. Most motoneurons (30/37) responded to ramp current injections with adapting patterns of discharge and the frequency-current (f-I) relations of nearly all motoneurons included a steep subprimary range of discharge. Despite the prevalence of adapting f-I relations, responses included indications that persistent inward currents (PICs) were activated, including increased membrane noise and prepotentials before discharge, as well as counterclockwise hysteresis and secondary ranges in f-I relations. Examination of spike thresholds and afterhyperpolarization (AHP) trajectories during repetitive discharge revealed systematic changes in threshold and trajectory within the subprimary, primary, and secondary f-I ranges. These changes in the primary and secondary ranges were qualitatively similar to those described previously for cat motoneurons. Within the subprimary range, AHP trajectories often included shallow approaches to threshold following recruitment and slope of the AHP ramp consistently increased until the subprimary range was reached. We suggest that PICs activated near recruitment contributed to these slope changes and formation of the subprimary range. Discharge characteristics were strongly correlated with motoneuron size, using input conductance as an indicator of size. Discharge adaptation, recruitment current, and frequency increased with input conductance, whereas both subprimary and primary f-I gains decreased. These results are discussed with respect to potential mechanisms and their functional implications.


Assuntos
Potenciais de Ação/fisiologia , Membro Posterior/fisiologia , Neurônios Motores/fisiologia , Animais , Ratos , Ratos Long-Evans , Recrutamento Neurofisiológico/fisiologia
13.
Bioelectron Med (Lond) ; 2(3): 123-126, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32440364

RESUMO

In this interview, we spoke with Ranu and James at SfN Neuroscience (19-23 October 2019, Chicago, IL, USA) to discover more about their collaboration on a clinical trial aiming to improve the lives of American veterans and service members who have lost limbs. The clinical trial involves the adaptive neural systems neural-enabled prosthetic hand system [1,2].

14.
Sci Rep ; 10(1): 21903, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318547

RESUMO

Mechanical ventilation is the standard treatment when volitional breathing is insufficient, but drawbacks include muscle atrophy, alveolar damage, and reduced mobility. Respiratory pacing is an alternative approach using electrical stimulation-induced diaphragm contraction to ventilate the lung. Oxygenation and acid-base homeostasis are maintained by matching ventilation to metabolic needs; however, current pacing technology requires manual tuning and does not respond to dynamic user-specific metabolic demand, thus requiring re-tuning of stimulation parameters as physiological changes occur. Here, we describe respiratory pacing using a closed-loop adaptive controller that can self-adjust in real-time to meet metabolic needs. The controller uses an adaptive Pattern Generator Pattern Shaper (PG/PS) architecture that autonomously generates a desired ventilatory pattern in response to dynamic changes in arterial CO2 levels and, based on a learning algorithm, modulates stimulation intensity and respiratory cycle duration to evoke this ventilatory pattern. In vivo experiments in rats with respiratory depression and in those with a paralyzed hemidiaphragm confirmed that the controller can adapt and control ventilation to ameliorate hypoventilation and restore normocapnia regardless of the cause of respiratory dysfunction. This novel closed-loop bioelectronic controller advances the state-of-art in respiratory pacing by demonstrating the ability to automatically personalize stimulation patterns and adapt to achieve adequate ventilation.


Assuntos
Algoritmos , Terapia por Estimulação Elétrica , Pulmão/fisiopatologia , Respiração , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Respiração Artificial
15.
J Neurosci Methods ; 176(2): 213-24, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18848960

RESUMO

Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.


Assuntos
Estimulação Elétrica/métodos , Membro Posterior/fisiologia , Extremidade Inferior/fisiologia , Modelos Animais , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Biofísica , Eletrodos , Eletromiografia/métodos , Feminino , Movimento/fisiologia , Contração Muscular/fisiologia , Ratos , Ratos Long-Evans , Torque
16.
PLoS One ; 14(1): e0210956, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650161

RESUMO

Current myoelectric prosthetic limbs are limited in their ability to provide direct sensory feedback to users, which increases attentional demands and reliance on visual cues. Vibrotactile sensory substitution (VSS), which can be used to provide sensory feedback in a non-invasive manner has demonstrated some improvement in myoelectric hand control. In this work, we developed and tested two VSS configurations: one with a single burst-rate modulated actuator and another with a spatially distributed array of five coin tactors. We performed a direct comparative assessment of these two VSS configurations with able-bodied subjects to investigate sensory perception, myoelectric control of grasp force and hand aperture with a prosthesis, and the effects of interface compliance. Six subjects completed a sensory perception experiment under a stimulation only paradigm; sixteen subjects completed experiments to compare VSS performance on perception and graded myoelectric control during grasp force and hand aperture tasks; and ten subjects completed experiments to investigate the effect of mechanical compliance of the myoelectric hand on the ability to control grasp force. Results indicated that sensory perception of vibrotactile feedback was not different for the two VSS configurations in the absence of active myoelectric control, but it was better with feedback from the coin tactor array than with the single actuator during myoelectric control of grasp force. Graded myoelectric control of grasp force and hand aperture was better with feedback from the coin tactor array than with the single actuator, and myoelectric control of grasp force was improved with a compliant grasp interface. Further investigations with VSS should focus on the use of coin tactor arrays by subjects with amputation in real-world settings and on improving control of grasp force by increasing the mechanical compliance of the hand.


Assuntos
Membros Artificiais , Retroalimentação Sensorial/fisiologia , Força da Mão/fisiologia , Mãos/fisiologia , Tato/fisiologia , Adulto , Amputação Cirúrgica , Amputados , Fenômenos Biomecânicos , Complacência (Medida de Distensibilidade)/fisiologia , Simulação por Computador , Eletromiografia , Feminino , Humanos , Masculino , Percepção/fisiologia , Desenho de Prótese , Vibração , Adulto Jovem
17.
J Neurotrauma ; 36(24): 3363-3377, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31146654

RESUMO

Ventilatory pacing by electrical stimulation of the phrenic nerve or of the diaphragm has been shown to enhance quality of life compared to mechanical ventilation. However, commercially available ventilatory pacing devices require initial manual specification of stimulation parameters and frequent adjustment to achieve and maintain suitable ventilation over long periods of time. Here, we have developed an adaptive, closed-loop, neuromorphic, pattern-shaping controller capable of automatically determining a suitable stimulation pattern and adapting it to maintain a desired breath-volume profile on a breath-by-breath basis. The system adapts the pattern of stimulation parameters based on the error between the measured volume sampled every 40 ms and a desired breath volume profile. In vivo studies in anesthetized male Sprague-Dawley rats without and with spinal cord injury by spinal hemisection at C2 indicated that the controller was capable of automatically adapting stimulation parameters to attain a desired volume profile. Despite diaphragm hemiparesis, the controller was able to achieve a desired volume in the injured animals that did not differ from the tidal volume observed before injury (p = 0.39). Closed-loop adaptive pacing partially mitigated hypoventilation as indicated by reduction of end-tidal CO2 values during pacing. The closed-loop controller was developed and parametrized in a computational testbed before in vivo assessment. This bioelectronic technology could serve as an individualized and autonomous respiratory pacing approach for support or recovery from ventilatory deficiency.


Assuntos
Diafragma/fisiologia , Ventilação Pulmonar/fisiologia , Respiração Artificial/métodos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Vértebras Cervicais/lesões , Diafragma/inervação , Masculino , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial/instrumentação , Traumatismos da Medula Espinal/terapia , Volume de Ventilação Pulmonar/fisiologia
18.
J Neurosci Methods ; 167(2): 317-26, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17870182

RESUMO

Upper extremity neuromuscular electrical stimulation (FNS) has long been utilized as a neuroprosthesis to restore hand-grasp function in individuals with neurological disorders and injuries. More recently, electrical stimulation is being used as a rehabilitative therapy to tap into central nervous system plasticity. Here, we present initial development of a rodent model for neuromuscular stimulation induced forelimb movement that can be used as a platform to investigate stimulation-induced plasticity. The motor points for flexors and extensors of the shoulder, elbow, and digits were identified and implanted with custom-built stimulation electrodes. The strength-duration curves were determined and from these curves the appropriate stimulation parameters required to produce consistent isolated contraction of each muscle with adequate joint movement were determined. Using these parameters and previous locomotor EMG data, stimulation was performed on each joint muscle pair to produce reciprocal flexion/extension movements in the shoulder, elbow, and digits, while 3D joint kinematics were assessed. Additionally, co-stimulation of multiple muscles across multiple forelimb joints was performed to produce stable multi-joint movements similar to those observed during reach-grasp-release movements. Future work will utilize this model to investigate the efficacy and underlying mechanisms of forelimb neuromuscular stimulation therapy to promote recovery and plasticity after neural injury in rodents.


Assuntos
Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Membro Anterior/inervação , Força Muscular/efeitos da radiação , Sistema Musculoesquelético/efeitos da radiação , Animais , Fenômenos Biomecânicos , Relação Dose-Resposta à Radiação , Eletrodos Implantados , Feminino , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Modelos Animais , Movimento/efeitos da radiação , Fadiga Muscular/efeitos da radiação , Força Muscular/fisiologia , Ratos , Ratos Long-Evans
19.
Bioelectron Med (Lond) ; 1(1): 55-69, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29480906

RESUMO

The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications. This manuscript reviews the current state-of-the-art in bionic intrafascicular interfaces, presents specific concerns for stimulation and recording, describes key implementation considerations and discusses challenges for future designs of bionic intrafascicular interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA