RESUMO
In this work, we demonstrate the synthesis of edge-rich vertical multilayer graphene nanotube arrays and edge density-dependent capacitance in a supercapacitor application. We employ Ni-Au multi-block vertical nanotubes fabricated by anodic aluminum oxide template-assisted electrodeposition as a designer substrate for multilayer graphene growth. This edge generation of graphene relies on the distinct carbon solubility of Au and Ni under chemical vapor deposition. Therefore the graphene edge density is tailorable by controlling the total number of bimetallic interfaces of alternating electrodeposited Ni and Au blocks. In supercapacitor applications, we found that the capacitance heavily correlates to the graphene edge densities. Multilayer graphene nanotubes with 18 bimetallic interfaces exhibit 8.4 times higher capacitance than those without interfaces. This experimental evaluation shows great promise to significantly enhance the supercapacitor capacitance by creating high-density edges on multilayer graphene.
RESUMO
Pancreatic cancer is an aggressive malignancy that often goes undiagnosed in the early stages. Non-invasive, early, and accurate diagnosis is therefore undoubtedly the "holy grail" of pancreatic cancer research. However, despite extensive research efforts, there is no definitive biomarker for this cancer. Previously, we identified alkaline phosphatase placental-like 2 (ALPPL2) as a diagnostic biomarker for pancreatic ductal adenocarcinoma and developed a 2'-fluoro modified RNA aptamer toward it. In this study, we show that ALPPL2 is present in pancreatic cancer extracellular vesicles (EVs) and therefore has potential application in liquid biopsy-based diagnostic strategies. We also developed ALPPL2 direct and sandwich aptamer-linked immobilized sorbent assay (ALISA) for EVs, which could sensitively and specifically detect the protein. We believe that our ALISA format may have a potential diagnostic utility in screening pancreatic-cancer-derived EVs.