RESUMO
PURPOSE: Supporting the surgeon during surgery is one of the main goals of intelligent ORs. The OR-Pad project aims to optimize the information flow within the perioperative area. A shared information space should enable appropriate preparation and provision of relevant information at any time before, during, and after surgery. METHODS: Based on previous work on an interaction concept and system architecture for the sterile OR-Pad system, we designed a user interface for mobile and intraoperative (stationary) use, focusing on the most important functionalities like clear information provision to reduce information overload. The concepts were transferred into a high-fidelity prototype for demonstration purposes. The prototype was evaluated from different perspectives, including a usability study. RESULTS: The prototype's central element is a timeline displaying all available case information chronologically, like radiological images, labor findings, or notes. This information space can be adapted for individual purposes (e.g., highlighting a tumor, filtering for own material). With the mobile and intraoperative mode of the system, relevant information can be added, preselected, viewed, and extended during the perioperative process. Overall, the evaluation showed good results and confirmed the vision of the information system. CONCLUSION: The high-fidelity prototype of the information system OR-Pad focuses on supporting the surgeon via a timeline making all available case information accessible before, during, and after surgery. The information space can be personalized to enable targeted support. Further development is reasonable to optimize the approach and address missing or insufficient aspects, like the holding arm and sterility concept or new desired features.
Assuntos
Infertilidade , Humanos , Sistemas de InformaçãoRESUMO
One of the key challenges for automatic assistance is the support of actors in the operating room depending on the status of the procedure. Therefore, context information collected in the operating room is used to gain knowledge about the current situation. In literature, solutions already exist for specific use cases, but it is doubtful to what extent these approaches can be transferred to other conditions. We conducted a comprehensive literature research on existing situation recognition systems for the intraoperative area, covering 274 articles and 95 cross-references published between 2010 and 2019. We contrasted and compared 58 identified approaches based on defined aspects such as used sensor data or application area. In addition, we discussed applicability and transferability. Most of the papers focus on video data for recognizing situations within laparoscopic and cataract surgeries. Not all of the approaches can be used online for real-time recognition. Using different methods, good results with recognition accuracies above 90% could be achieved. Overall, transferability is less addressed. The applicability of approaches to other circumstances seems to be possible to a limited extent. Future research should place a stronger focus on adaptability. The literature review shows differences within existing approaches for situation recognition and outlines research trends. Applicability and transferability to other conditions are less addressed in current work.
Assuntos
Laparoscopia , Salas CirúrgicasRESUMO
PURPOSE: Medical processes can be modeled using different methods and notations. Currently used modeling systems like Business Process Model and Notation (BPMN) are not capable of describing the highly flexible and variable medical processes in sufficient detail. METHODS: We combined two modeling systems, Business Process Management (BPM) and Adaptive Case Management (ACM), to be able to model non-deterministic medical processes. We used the new Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN). RESULTS: First, we explain how CMMN, DMN and BPMN could be used to model non-deterministic medical processes. We applied this methodology to model 79 cataract operations provided by University Hospital Leipzig, Germany, and four cataract operations provided by University Eye Hospital Tuebingen, Germany. Our model consists of 85 tasks and about 20 decisions in BPMN. We were able to expand the system with more complex situations that might appear during an intervention. CONCLUSION: An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.