Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 586(7829): 417-423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999463

RESUMO

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Assuntos
Retroalimentação Fisiológica , Microglia/fisiologia , Inibição Neural , Neurônios/fisiologia , 5'-Nucleotidase/metabolismo , Potenciais de Ação , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Inibição Neural/genética , Receptor A1 de Adenosina/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Fatores de Tempo
2.
J Infect Dis ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37804120

RESUMO

BACKGROUND: ATP enhances neutrophil responses, but little is known about the role of ATP in influenza infections. METHODS: We used a mouse influenza model to study if ATP release is associated with neutrophil activation and disease progression. RESULTS: Influenza infection increased pulmonary ATP levels 5-fold and plasma ATP levels 3-fold over the levels in healthy mice. Adding ATP at those concentrations to blood from healthy mice primed their neutrophils and enhanced CD11b and CD63 expression, CD62L shedding, and reactive oxygen species production in response to formyl peptide receptor (FPR) stimulation. Influenza infection also primed neutrophils in vivo, resulting in FPR-induced CD11b expression and CD62L shedding up to 3-times higher than that of uninfected mice. In infected mice, large numbers of neutrophils entered the lungs. These cells were significantly more activated than peripheral neutrophils of infected and pulmonary neutrophils of healthy mice. Plasma ATP levels of infected mice and influenza disease progression corresponded with the numbers and activation level of their pulmonary neutrophils. CONCLUSION: Our findings suggest that ATP release from the lungs of infected mice promotes influenza disease progression by priming peripheral neutrophils that become strongly activated and cause pulmonary tissue damage after their recruitment to the lungs.

3.
Purinergic Signal ; 19(4): 651-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36596963

RESUMO

Neutrophils (PMNs) require extracellular ATP and adenosine (ADO) to fight bacterial infections, which often have life-threatening consequences in pediatric patients. We wondered whether the ATP and ADO levels in the plasma of children change with age and if these changes influence the antimicrobial efficacy of the PMNs of these children. We measured plasma concentrations of ATP and ADO and the activities of the enzymes responsible for the breakdown of these mediators in plasma samples from healthy children and adolescents (n = 45) ranging in age from 0.2 to 15 years. In addition, using blood samples of these individuals, we compared how effective their PMNs were in the phagocytosis of bacteria. In an experimental sepsis model with young (10 days) and adolescent mice (10 weeks), we studied how age influenced the resilience of these animals to bacterial infections and whether addition of ATP could improve the antimicrobial capacity of their PMNs. We found that plasma ATP levels correlated with age and were significantly lower in infants (< 1 year) than in adolescents (12-15 years). In addition, we observed significantly higher plasma ATPase and adenosine deaminase activities in children (< 12 years) when compared to the adolescent population. The activities of these ATP and ADO breakdown processes correlated inversely with age and with the ability of PMNs to phagocytize bacteria. Similar to their human counterparts, young mice also had significantly lower plasma ATP levels when compared to adolescent animals. In addition, we found that mortality of young mice after bacterial infection was significantly higher than that of adolescent mice. Moreover, bacterial phagocytosis by PMNs of young mice was weaker when compared to that of older mice. Finally, we found that ATP supplementation could recover bacterial phagocytosis of young mice to levels similar to those of adolescent mice. Our findings suggest that rapid ATP hydrolysis in the plasma of young children lowers the antimicrobial functions of their PMNs and that this may contribute to the vulnerability of pediatric patients to bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Adolescente , Humanos , Camundongos , Criança , Animais , Pré-Escolar , Lactente , Neutrófilos/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Infecções Bacterianas/metabolismo , Anti-Infecciosos/metabolismo , Fagocitose
4.
Purinergic Signal ; 18(2): 223-239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132577

RESUMO

ATP released into the bloodstream regulates immune responses and other physiological functions. Excessive accumulation of extracellular ATP interferes with these functions, and elevated plasma ATP levels could indicate infections and other pathological disorders. However, there is considerable disagreement about what constitutes normal plasma ATP levels. Therefore, we optimized a method to accurately assess ATP concentrations in blood. We found that rapid chilling of heparinized blood samples is essential to preserve in vivo ATP levels and that differential centrifugation minimizes inadvertent ATP release due to cell damage and mechanical stress. Plasma samples were stabilized with perchloric acid, etheno-derivatized, and delipidated for sensitive analysis of ATP and related compounds using high-performance liquid chromatography (HPLC) and fluorescence detection. We measured 33 ± 20 nM ATP, 90 ± 45 nM ADP, 100 ± 55 nM AMP, and 81 ± 51 nM adenosine in the blood of healthy human adults (n = 10). In critically ill patients, ATP levels were 6 times higher than in healthy subjects. The anticoagulant greatly affected results. ATP levels were nearly 8 times higher in EDTA plasma than in heparin plasma, while AMP levels were 3 times lower and adenosine was entirely absent in EDTA plasma. If EDTA blood was not immediately chilled, ATP, ADP, and AMP levels continued to rise, which indicates that EDTA interferes with the endogenous mechanisms that regulate plasma adenylate levels. Our optimized method eliminates artifacts that prevent accurate determination of plasma adenylates and will be useful for studying mechanisms that regulate adenylate levels and for monitoring of pathological processes in patients with infections and other diseases.


Assuntos
Trifosfato de Adenosina , Adenosina , Difosfato de Adenosina , Monofosfato de Adenosina , Trifosfato de Adenosina/análise , Cromatografia Líquida de Alta Pressão , Ácido Edético , Humanos
5.
Cell Mol Life Sci ; 77(5): 885-901, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31278420

RESUMO

Purinergic P2 receptors are critical regulators of several functions within the vascular system, including platelet aggregation, vascular inflammation, and vascular tone. However, a role for ATP release and P2Y receptor signalling in angiogenesis remains poorly defined. Here, we demonstrate that blood vessel growth is controlled by P2Y2 receptors. Endothelial sprouting and vascular tube formation were significantly dependent on P2Y2 expression and inhibition of P2Y2 using a selective antagonist blocked microvascular network generation. Mechanistically, overexpression of P2Y2 in endothelial cells induced the expression of the proangiogenic molecules CXCR4, CD34, and angiopoietin-2, while expression of VEGFR-2 was decreased. Interestingly, elevated P2Y2 expression caused constitutive phosphorylation of ERK1/2 and VEGFR-2. However, stimulation of cells with the P2Y2 agonist UTP did not influence sprouting unless P2Y2 was constitutively expressed. Finally, inhibition of VEGFR-2 impaired spontaneous vascular network formation induced by P2Y2 overexpression. Our data suggest that P2Y2 receptors have an essential function in angiogenesis, and that P2Y2 receptors present a therapeutic target to regulate blood vessel growth.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/crescimento & desenvolvimento , Neovascularização Fisiológica/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Angiopoietina-2/biossíntese , Antígenos CD34/biossíntese , Células Cultivadas , Humanos , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Fosforilação/fisiologia , Agregação Plaquetária/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores CXCR4/biossíntese , Receptores Purinérgicos P2Y2/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
6.
J Allergy Clin Immunol ; 145(6): 1673-1680.e11, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32035159

RESUMO

BACKGROUND: Decreased TNF-α production in whole blood after ex vivo LPS stimulation indicates suppression of the Toll-like receptor (TLR)4 pathway. This is associated with increased mortality in pediatric influenza critical illness. Whether antiviral immune signaling pathways are also suppressed in these patients is unclear. OBJECTIVES: We sought to evaluate suppression of the TLR4 and the antiviral retinoic acid-inducible gene-I (RIG-I) pathways with clinical outcomes in children with severe influenza infection. METHODS: In this 24-center, prospective, observational cohort study of children with confirmed influenza infection, blood was collected within 72 hours of intensive care unit admission. Ex vivo whole blood stimulations were performed with matched controls using the viral ligand polyinosinic-polycytidylic acid-low-molecular-weight/LyoVec and LPS to evaluate IFN-α and TNF-α production capacities (RIG-I and TLR4 pathways, respectively). RESULTS: Suppression of either IFN-α or TNF-α production capacity was associated with longer duration of mechanical ventilation and hospitalization, and increased organ dysfunction. Children with suppression of both RIG-I and TLR4 pathways (n = 33 of 103 [32%]) were more likely to have prolonged (≥7 days) multiple-organ dysfunction syndrome (30.3% vs 8.6%; P = .004) or prolonged hypoxemic respiratory failure (39.4% vs 11.4%; P = .001) compared with those with single- or no pathway suppression. CONCLUSIONS: Suppression of both RIG-I and TLR4 signaling pathways, essential for respective antiviral and antibacterial responses, is common in previously immunocompetent children with influenza-related critical illness and is associated with bacterial coinfection and adverse outcomes. Prospective testing of both pathways may aid in risk-stratification and in immune monitoring.


Assuntos
Proteína DEAD-box 58/metabolismo , Influenza Humana/metabolismo , Receptores Imunológicos/metabolismo , Receptor 4 Toll-Like/metabolismo , Adolescente , Antivirais/uso terapêutico , Criança , Pré-Escolar , Estado Terminal , Feminino , Humanos , Influenza Humana/tratamento farmacológico , Interferon-alfa/metabolismo , Masculino , Estudos Prospectivos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biol Chem ; 294(16): 6283-6293, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30787105

RESUMO

T cell suppression contributes to immune dysfunction in sepsis. However, the underlying mechanisms are not well-defined. Here, we show that exposure of human peripheral blood mononuclear cells to bacterial lipopolysaccharide (LPS) can rapidly and dose-dependently suppress interleukin-2 (IL-2) production and T cell proliferation. We also report that these effects depend on monocytes. LPS did not prevent the interaction of monocytes with T cells, nor did it induce programmed cell death protein 1 (PD-1) signaling that causes T cell suppression. Instead, we found that LPS stimulation of monocytes led to the accumulation of extracellular ATP that impaired mitochondrial function, cell migration, IL-2 production, and T cell proliferation. Mechanistically, LPS-induced ATP accumulation exerted these suppressive effects on T cells by activating the purinergic receptor P2Y11 on the cell surface of T cells. T cell functions could be partially restored by enzymatic removal of extracellular ATP or pharmacological blocking of P2Y11 receptors. Plasma samples obtained from sepsis patients had similar suppressive effects on T cells from healthy subjects. Our findings suggest that LPS and ATP accumulation in the circulation of sepsis patients suppresses T cells by promoting inappropriate P2Y11 receptor stimulation that impairs T cell metabolism and functions. We conclude that inhibition of LPS-induced ATP release, removal of excessive extracellular ATP, or P2Y11 receptor antagonists may be potential therapeutic strategies to prevent T cell suppression and restore host immune function in sepsis.


Assuntos
Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/toxicidade , Mitocôndrias/metabolismo , Receptores Purinérgicos P2/metabolismo , Sepse/metabolismo , Linfócitos T/metabolismo , Trifosfato de Adenosina/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Jurkat , Masculino , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/patologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/imunologia , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
8.
Purinergic Signal ; 15(2): 127-137, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919205

RESUMO

Previous studies have shown that T cell receptor (TCR) and CD28 coreceptor stimulation involves rapid ATP release, autocrine purinergic feedback via P2X receptors, and mitochondrial ATP synthesis that promote T cell activation. Here, we show that ADP formation and autocrine stimulation of P2Y1 receptors are also involved in these purinergic signaling mechanisms. Primary human CD4 T cells and the human Jurkat CD4 T cell line express P2Y1 receptors. The expression of this receptor increases following T cell stimulation. Inhibition of P2Y1 receptors impairs the activation of mitochondria, as assessed by mitochondrial Ca2+ uptake, and reduces cytosolic Ca2+ signaling in response to TCR/CD28 stimulation. We found that the addition of exogenous ADP or overexpression of P2Y1 receptors significantly increased IL-2 mRNA transcription in response to TCR/CD28 stimulation. Conversely, antagonists or silencing of P2Y1 receptors reduced IL-2 mRNA transcription and attenuated T cell functions. We conclude that P2Y1 and P2X receptors have non-redundant, synergistic functions in the regulation of T cell activation. P2Y1 receptors may represent potential therapeutic targets to modulate T cell function in inflammation and host defense.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/fisiologia , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Transdução de Sinais/imunologia , Comunicação Autócrina , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos
9.
Crit Care Med ; 46(12): e1183-e1189, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30247270

RESUMO

OBJECTIVES: Monocytes and macrophages produce interleukin-1ß by inflammasome activation which involves adenosine triphosphate release, pannexin-1 channels, and P2X7 receptors. However, interleukin-1ß can also be produced in an inflammasome-independent fashion. Here we studied if this mechanism also involves adenosine triphosphate signaling and how it contributes to inflammasome activation. DESIGN: In vitro studies with human cells and randomized animal experiments. SETTING: Preclinical academic research laboratory. SUBJECTS: Wild-type C57BL/6 and pannexin-1 knockout mice, healthy human subjects for cell isolation. INTERVENTIONS: Human monocytes and U937 macrophages were treated with different inhibitors to study how purinergic signaling contributes to toll-like receptor-induced cell activation and interleukin-1ß production. Wild-type and pannexin-1 knockout mice were subjected to cecal ligation and puncture to study the role of purinergic signaling in interleukin-1ß production and host immune defense. MEASUREMENTS AND MAIN RESULTS: Toll-like receptor agonists triggered mitochondrial adenosine triphosphate production and adenosine triphosphate release within seconds. Inhibition of mitochondria, adenosine triphosphate release, or P2 receptors blocked p38 mitogen-activated protein kinase and caspase-1 activation and interleukin-1ß secretion. Mice lacking pannexin-1 failed to activate monocytes, to produce interleukin-1ß, and to effectively clear bacteria following cecal ligation and puncture. CONCLUSIONS: Purinergic signaling has two separate roles in monocyte/macrophage activation, namely to facilitate the initial detection of danger signals via toll-like receptors and subsequently to regulate nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 inflammasome activation. Further dissection of these mechanisms may reveal novel therapeutic targets for immunomodulation in critical care patients.


Assuntos
Trifosfato de Adenosina/imunologia , Infecções/imunologia , Inflamassomos/imunologia , Ativação de Macrófagos/imunologia , Monócitos/imunologia , Animais , Técnicas de Cultura de Células , Conexinas/farmacologia , Modelos Animais de Doenças , Compostos Heterocíclicos com 3 Anéis , Humanos , Immunoblotting , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/farmacologia , Transdução de Sinais , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inibidores
10.
Crit Care Med ; 45(1): e97-e104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27548819

RESUMO

OBJECTIVE: Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. DESIGN: Prospective randomized animal investigation and in vitro studies. SETTING: Preclinical academic research laboratory. SUBJECTS: Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. INTERVENTIONS: Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. MEASUREMENTS AND MAIN RESULTS: Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. CONCLUSIONS: Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses, making this a promising new treatment strategy for sepsis.


Assuntos
Trifosfato de Adenosina/fisiologia , Quimiotaxia de Leucócito/imunologia , Neutrófilos/fisiologia , Sepse/imunologia , Animais , Apirase/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Sepse/mortalidade , Suramina/farmacologia
11.
PLoS Pathog ; 11(10): e1005177, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485519

RESUMO

Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus de RNA/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Infecções por Arenaviridae/imunologia , Cromatografia Líquida de Alta Pressão , Doença Crônica , Modelos Animais de Doenças , Citometria de Fluxo , Infecções por HIV/imunologia , Hepatite C Crônica/imunologia , Humanos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
12.
J Infect Dis ; 213(3): 456-64, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26150546

RESUMO

T cell suppression in sepsis is a well-known phenomenon; however, the underlying mechanisms are not fully understood. Previous studies have shown that T cell stimulation up-regulates mitochondrial adenosine triphosphate (ATP) production to fuel purinergic signaling mechanisms necessary for adequate T cell responses. Here we show that basal mitochondrial ATP production, ATP release, and stimulation of P2X1 receptors represent a standby purinergic signaling mechanism that is necessary for antigen recognition. Inhibition of this process impairs T cell vigilance and the ability of T cells to trigger T cell activation, up-regulate mitochondrial ATP production, and stimulate P2X4 and P2X7 receptors that elicit interleukin 2 production and T cell proliferation. T cells of patients with sepsis lack this standby purinergic signaling system owing to defects in mitochondrial function, ATP release, and calcium signaling. These defects impair antigen recognition and T cell function and are correlated with sepsis severity. Pharmacological targeting of these defects may improve T cell function and reduce the risk of sepsis.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Sinalização do Cálcio/fisiologia , Mitocôndrias/fisiologia , Purinas/metabolismo , Receptores Purinérgicos/fisiologia , Sepse/imunologia , Adolescente , Adulto , Humanos , Células Jurkat , Suramina , Adulto Jovem
13.
Purinergic Signal ; 12(3): 439-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27020575

RESUMO

T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca(2+) in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca(2+) signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Proliferação de Células/fisiologia , Leucemia de Células T/metabolismo , Receptores Purinérgicos P2X/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Células Jurkat , Leucemia de Células T/patologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Purinergic Signal ; 12(4): 673-685, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27577957

RESUMO

In neutrophils, adenosine triphosphate (ATP) release and autocrine purinergic signaling regulate coordinated cell motility during chemotaxis. Here, we studied whether similar mechanisms regulate the motility of breast cancer cells. While neutrophils and benign human mammary epithelial cells (HMEC) form a single leading edge, MDA-MB-231 breast cancer cells possess multiple leading edges enriched with A3 adenosine receptors. Compared to HMEC, MDA-MB-231 cells overexpress the ectonucleotidases ENPP1 and CD73, which convert extracellular ATP released by the cells to adenosine that stimulates A3 receptors and promotes cell migration with frequent directional changes. However, exogenous adenosine added to breast cancer cells or the A3 receptor agonist IB-MECA dose-dependently arrested cell motility by simultaneous stimulation of multiple leading edges, doubling cell surface areas and significantly reducing migration velocity by up to 75 %. We conclude that MDA-MB-231 cells, HMEC, and neutrophils differ in the purinergic signaling mechanisms that regulate their motility patterns and that the subcellular distribution of A3 adenosine receptors in MDA-MB-231 breast cancer cells contributes to dysfunctional cell motility. These findings imply that purinergic signaling mechanisms may be potential therapeutic targets to interfere with the motility of breast cancer cells in order to reduce the spread of cancer cells and the risk of metastasis.


Assuntos
Adenosina/análogos & derivados , Adenosina/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A3 de Adenosina/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
J Biol Chem ; 289(39): 26794-26803, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25104353

RESUMO

Polymorphonuclear neutrophils (PMNs) form the first line of defense against invading microorganisms. We have shown previously that ATP release and autocrine purinergic signaling via P2Y2 receptors are essential for PMN activation. Here we show that mitochondria provide the ATP that initiates PMN activation. Stimulation of formyl peptide receptors increases the mitochondrial membrane potential (Δψm) and triggers a rapid burst of ATP release from PMNs. This burst of ATP release can be blocked by inhibitors of mitochondrial ATP production and requires an initial formyl peptide receptor-induced Ca(2+) signal that triggers mitochondrial activation. The burst of ATP release generated by the mitochondria fuels a first phase of purinergic signaling that boosts Ca(2+) signaling, amplifies mitochondrial ATP production, and initiates functional PMN responses. Cells then switch to glycolytic ATP production, which fuels a second round of purinergic signaling that sustains Ca(2+) signaling via P2X receptor-mediated Ca(2+) influx and maintains functional PMN responses such as oxidative burst, degranulation, and phagocytosis.


Assuntos
Trifosfato de Adenosina/metabolismo , Comunicação Autócrina/fisiologia , Sinalização do Cálcio/fisiologia , Mitocôndrias/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Receptores Purinérgicos P2X/metabolismo , Trifosfato de Adenosina/imunologia , Degranulação Celular/fisiologia , Feminino , Humanos , Masculino , Mitocôndrias/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Fagocitose/fisiologia , Receptores Purinérgicos P2X/imunologia , Explosão Respiratória/fisiologia
16.
J Biol Chem ; 289(37): 25936-45, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25070895

RESUMO

T cells play a central role in host defense. ATP release and autocrine feedback via purinergic receptors has been shown to regulate T cell function. However, the sources of the ATP that drives this process are not known. We found that stimulation of T cells triggers a spike in cellular ATP production that doubles intracellular ATP levels in <30 s and causes prolonged ATP release into the extracellular space. Cell stimulation triggered rapid mitochondrial Ca(2+) uptake, increased oxidative phosphorylation, a drop in mitochondrial membrane potential (Δψm), and the accumulation of active mitochondria at the immune synapse of stimulated T cells. Inhibition of mitochondria with CCCP, KCN, or rotenone blocked intracellular ATP production, ATP release, intracellular Ca(2+) signaling, induction of the early activation marker CD69, and IL-2 transcription in response to cell stimulation. These findings demonstrate that rapid activation of mitochondrial ATP production fuels the purinergic signaling mechanisms that regulate T cells and define their role in host defense.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças Transmissíveis/imunologia , Imunidade Celular/genética , Linfócitos T/imunologia , Trifosfato de Adenosina/biossíntese , Comunicação Autócrina , Sinalização do Cálcio/genética , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Doenças Transmissíveis/genética , Humanos , Terapia de Imunossupressão , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Receptores Purinérgicos/metabolismo , Linfócitos T/metabolismo
17.
J Biol Chem ; 289(39): 27090-27104, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118288

RESUMO

Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing.


Assuntos
Trifosfato de Adenosina/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ondas de Choque de Alta Energia , Sistema de Sinalização das MAP Quinases , Cicatrização , Adulto , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Células Jurkat , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
18.
J Biol Chem ; 288(31): 22650-7, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23798685

RESUMO

Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.


Assuntos
Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neutrófilos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Quimiotaxia , AMP Cíclico/metabolismo , Células HL-60 , Humanos , Receptor A2A de Adenosina/metabolismo
19.
Hepatology ; 57(1): 205-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22859060

RESUMO

UNLABELLED: Liver cancer is associated with chronic inflammation, which is linked to immune dysregulation, disordered metabolism, and aberrant cell proliferation. Nucleoside triphosphate diphosphohydrolase-1; (CD39/ENTPD1) is an ectonucleotidase that regulates extracellular nucleotide/nucleoside concentrations by scavenging nucleotides to ultimately generate adenosine. These properties inhibit antitumor immune responses and promote angiogenesis, being permissive for the growth of transplanted tumors. Here we show that Cd39 deletion promotes development of both induced and spontaneous autochthonous liver cancer in mice. Loss of Cd39 results in higher concentrations of extracellular nucleotides, which stimulate proliferation of hepatocytes, abrogate autophagy, and disrupt glycolytic metabolism. Constitutive activation of Ras-mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR)-S6K1 pathways occurs in both quiescent Cd39 null hepatocytes in vitro and liver tissues in vivo. Exogenous adenosine 5'-triphosphate (ATP) boosts these signaling pathways, whereas rapamycin inhibits such aberrant responses in hepatocytes. CONCLUSION: Deletion of Cd39 and resulting changes in disordered purinergic signaling perturb hepatocellular metabolic/proliferative responses, paradoxically resulting in malignant transformation. These findings might impact adjunctive therapies for cancer. Our studies indicate that the biology of autochthonous and transplanted tumors is quite distinct.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas Experimentais/etiologia , Receptores Purinérgicos/metabolismo , Animais , Antígenos CD/genética , Apirase/genética , Autofagia , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Glicólise , Hepatócitos/fisiologia , Fígado/enzimologia , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
20.
Stem Cells ; 31(6): 1170-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23404811

RESUMO

Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 µM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.


Assuntos
Trifosfato de Adenosina/metabolismo , Litotripsia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Apirase/genética , Apirase/metabolismo , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/enzimologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA