Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164087

RESUMO

Migration kinetic data from general purpose polystyrene (GPPS) and high impact polystyrene (HIPS) were generated for a set of model substances as well as styrene monomer and oligomers at different temperatures (20 °C, 40 °C, 60 °C) using food simulants stipulated in the European Regulation (EU) 10/2011 and real foods like milk, cream and olive oil (20 °C, 40 °C). The extent of polymer swelling was characterized gravimetrically and visual changes of the test specimens after migration contact were recorded. Isooctane and 95% ethanol caused strong swelling and visual changes of HIPS, overestimating real migration into foods especially at high temperatures; GPPS was affected by isooctane only at 60 °C. With 50% ethanol, after 10 days contact at 60 °C or 40 °C both polymers were slightly swollen. Contrary, most of the real foods analyzed caused no detectable swelling or visual changes of the investigated polymers. This study demonstrates that the recommendations provided by EU regulations are not always in agreement with the physicochemical properties of styrenic polymers. The critical point remains the selection of adequate food simulants/testing conditions, since the high overestimation of aggressive media can lead to non-compliance of polystyrene materials even if the migration into real food would be of no concern.

2.
J Colloid Interface Sci ; 584: 45-56, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039682

RESUMO

HYPOTHESIS: Understanding microparticle and living cell deposition and attachment on surfaces from a flow is a long-standing surface-science problem, pivotal to developing antifouling strategies. Recent studies indicate a complex non-conservative and surface-specific nature of adhesion and mechanical contact forces that determine attachment kinetics. This requires new models and kinetic data, however, observed deposition rates (e.g., in parallel-plate flow chamber, PPFC) represent a superposition of attachment and bulk transport. Here, we propose to deduce attachment rates (as an appropriate rate constant) from spatial deposition profiles along PPFC and develop an analytical solution for the full problem, suitable for deposition data analysis and parameter fitting. EXPERIMENTS: Analytical solution, validated by numerical simulations, reveals relation between the deposition profile along PPFC and key model parameter B, the ratio of sedimentation and attachment rates. Its use is demonstrated on experimental data obtained in a PPFC for particles and bacteria on various surfaces. FINDINGS: Fitted B values highlight correlation with the particle/substrate nature and consistently explain the observed trends along PPFC, both decreasing and increasing. Thus derived attachment rates will serve as basis for future microscopic modelling that would relate attachment to appropriate surface and contact-mechanical characteristics of particles and substrate and flow conditions.


Assuntos
Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA