RESUMO
PURPOSE: To analyse recent epidemiological trends of bloodstream infections (BSI) caused by Enterococcus spp. In adult patients admitted to tertiary care centres in Germany. METHODS: Epidemiological data from the multicentre R-NET study was analysed. Patients presenting with E. faecium or E. faecalis in blood cultures in six German tertiary care university hospitals between October 2016 and June 2020 were prospectively evaluated. In vancomycin-resistant enterococci (VRE), the presence of vanA/vanB was confirmed via molecular methods. RESULTS: In the 4-year study period, 3001 patients with BSI due to Enterococcus spp. were identified. E. faecium was detected in 1830 patients (61%) and E. faecalis in 1229 patients (41%). Most BSI occurred in (sub-) specialties of internal medicine. The pooled incidence density of enterococcal BSI increased significantly (4.0-4.5 cases per 10,000 patient days), which was primarily driven by VRE BSI (0.5 to 1.0 cases per 10,000 patient days). In 2020, the proportion of VRE BSI was > 12% in all study sites (range, 12.8-32.2%). Molecular detection of resistance in 363 VRE isolates showed a predominance of the vanB gene (77.1%). CONCLUSION: This large multicentre study highlights an increase of BSI due to E. faecium, which was primarily driven by VRE. The high rates of hospital- and ICU-acquired VRE BSI point towards an important role of prior antibiotic exposure and invasive procedures as risk factors. Due to limited treatment options and high mortality rates of VRE BSI, the increasing incidence of VRE BSI is of major concern.
Assuntos
Bacteriemia , Infecções por Bactérias Gram-Positivas , Hospitais Universitários , Humanos , Alemanha/epidemiologia , Estudos Prospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Hospitais Universitários/estatística & dados numéricos , Idoso , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Adulto , Enterococcus/efeitos dos fármacos , Enterococcus/isolamento & purificação , Enterococos Resistentes à Vancomicina/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Incidência , Estudos de Coortes , Idoso de 80 Anos ou mais , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Testes de Sensibilidade Microbiana , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologiaRESUMO
OBJECTIVES: To analyse the influence of antibiotic consumption on healthcare-associated healthcare onset (HAHO) Clostridioides difficile infection (CDI) in a German university hospital setting. METHODS: Monthly ward-level antibiotic consumption measured in DDD/100 patient days (pd) and CDI surveillance data from five university hospitals in the period 2017 through 2019 were analysed. Uni- and multivariable analyses were performed with generalized estimating equation models. RESULTS: A total of 225 wards with 7347 surveillance months and 4â036â602 pd participated. With 1184 HAHO-CDI cases, there was a median incidence density of 0.17/1000 pd (IQR 0.03-0.43) across all specialties, with substantial differences among specialties. Haematology-oncology wards showed the highest median incidence density (0.67/1000 pd, IQR 0.44-1.01), followed by medical ICUs (0.45/1000 pd, IQR 0.27-0.73) and medical general wards (0.32/1000 pd, IQR 0.18-0.53). Multivariable analysis revealed carbapenem (mostly meropenem) consumption to be the only antibiotic class associated with increased HAHO-CDI incidence density. Each carbapenem DDD/100 pd administered increased the HAHO-CDI incidence density by 1.3% [incidence rate ratio (IRR) 1.013; 95% CI 1.006-1.019]. Specialty-specific analyses showed this influence only to be valid for haematological-oncological wards. Overall, factors like ward specialty (e.g. haematology-oncology ward IRR 2.961, 95% CI 2.203-3.980) or other CDI cases on ward had a stronger influence on HAHO-CDI incidence density (e.g. community-associated CDI or unknown association case in same month IRR 1.476, 95% CI 1.242-1.755) than antibiotic consumption. CONCLUSIONS: In the German university hospital setting, monthly ward-level carbapenem consumption seems to increase the HAHO-CDI incidence density predominantly on haematological-oncological wards. Furthermore, other patient-specific factors seem to be equally important to control HAHO-CDI.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Infecção Hospitalar , Humanos , Antibacterianos/uso terapêutico , Hospitais Universitários , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Carbapenêmicos , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Incidência , Estudos RetrospectivosRESUMO
Proinflammatory cytokines target vascular endothelial cells during COVID-19 infections. In particular, the endothelial glycocalyx (eGC), a proteoglycan-rich layer on top of endothelial cells, was identified as a vulnerable, vasoprotective structure during infections. Thus, eGC damage can be seen as a hallmark in the development of endothelial dysfunction and inflammatory processes. Using sera derived from patients suffering from COVID-19, we could demonstrate that the eGC became progressively worse in relation to disease severity (mild vs severe course) and in correlation to IL-6 levels. This could be prevented by administering low doses of spironolactone, a well-known and highly specific aldosterone receptor antagonist. Our results confirm that SARS-CoV-2 infections cause eGC damage and endothelial dysfunction and we outline the underlying mechanisms and suggest potential therapeutic options.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Glicocálix , Antagonistas de Receptores de Mineralocorticoides , SARS-CoV-2 , Espironolactona , COVID-19/sangue , COVID-19/patologia , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Glicocálix/efeitos dos fármacos , Glicocálix/patologia , Humanos , Interleucina-6/sangue , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Proteoglicanas/análise , Proteoglicanas/sangue , Espironolactona/farmacologia , Espironolactona/uso terapêuticoRESUMO
BACKGROUND: Considering the insufficiently controlled spread of new SARS-CoV-2 variants, partially low vaccination rates, and increased risk of a post-COVID syndrome, well-functioning, targeted intervention measures at local and national levels are urgently needed to contain the SARS-CoV-2 pandemic. Surveillance concepts (cross-sectional, cohorts, clusters) need to be carefully selected to monitor and assess incidence and prevalence at the population level. A critical methodological gap for identifying specific risks/dynamics for SARS-Cov-2 transmission and post-COVID-19-syndrome includes repetitive testing for past or present infection of a defined cohort with simultaneous assessment of symptoms, behavior, risk, and protective factors, as well as quality of life. METHODS: The ELISA-Study is a longitudinal, prospective surveillance study with a cohort approach launched in Luebeck in April 2020. The first part comprised regular PCR testing, antibody measurements, and a recurrent App-based questionnaire for a population-based cohort of 3000 inhabitants of Luebeck. The follow-up study protocol includes self-testing for antibodies and PCR testing for a subset of the participants, focusing on studying immunity after vaccination and/or infection and post-COVID-19 symptoms. DISCUSSION: The ELISA cohort and our follow-up study protocol will enable us to study the effects of a sharp increase of SARS-CoV-2 infections on seroprevalence of Anti-SARS-CoV-2 antibodies, post-COVID-19-symptoms, and possible medical, occupational, and behavioral risk factors. We will be able to monitor the pandemic continuously and discover potential sequelae of an infection long-term. Further examinations can be readily set up on an ad-hoc basis in the future. Our study protocol can be adapted to other regions and settings and is transferable to other infectious diseases. TRIAL REGISTRATION: DRKS.de, German Clinical Trials Register (DRKS), Identifier: DRKS00023418 , Registered on 28 October 2020.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Coortes , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Seguimentos , Humanos , Estudos Prospectivos , Qualidade de Vida , Estudos SoroepidemiológicosRESUMO
OBJECTIVES: To analyse the rectal carriage rate and the molecular epidemiology of vancomycin-resistant Enterococcus faecium (VREfm) recovered from patients upon hospital admission. METHODS: Adult patients were screened at six German university hospitals from five different federal states upon hospital admission for rectal colonization with VREfm between 2014 and 2018. Molecular characterization of VREfm was performed by WGS followed by MLST and core-genome MLST analysis. RESULTS: Of 16350 patients recruited, 263 were colonized with VREfm, with increasing prevalence rates during the 5 year study period (from 0.8% to 2.6%). In total, 78.5% of the VREfm were vanB positive and 20.2% vanA positive, while 1.2% harboured both vanA and vanB. The predominant ST was ST117 (56.7%) followed by ST80 (15%), ST203 (10.9%), ST78 (5.7%) and ST17 (3.2%). ST117/vanB VREfm isolates formed a large cluster of 96 closely related isolates extending across all six study centres and four smaller clusters comprising 13, 5, 4 and 3 isolates each. In contrast, among the other STs inter-regional clonal relatedness was rarely observed. CONCLUSIONS: To our knowledge, this is the largest admission prevalence and molecular epidemiology study of VREfm. These data provide insight into the epidemiology of VREfm at six German university hospitals and demonstrate the remarkable inter-regional clonal expansion of the ST117/vanB VREfm clone.
Assuntos
Infecção Hospitalar , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Adulto , Infecção Hospitalar/epidemiologia , Enterococcus faecium/genética , Genótipo , Alemanha/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Hospitais , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Prevalência , Vancomicina , Enterococos Resistentes à Vancomicina/genéticaRESUMO
Tight junctions seal the paracellular cleft of epithelia and endothelia, form vital barriers between tissue compartments and consist of tight-junction-associated marvel proteins (TAMPs) and claudins. The function of TAMPs and the interaction with claudins are not understood. We therefore investigated the binding between the TAMPs occludin, tricellulin, and marvelD3 and their interaction with claudins in living tight-junction-free human embryonic kidney-293 cells. In contrast to claudins and occludin, tricellulin and marvelD3 showed no enrichment at cell-cell contacts indicating lack of homophilic trans-interaction between two opposing cell membranes. However, occludin, marvelD3 and tricellulin exhibited homophilic cis-interactions, along one plasma membrane, as measured by fluorescence resonance energy transfer. MarvelD3 also cis-interacted with occludin and tricellulin heterophilically. Classic claudins, such as claudin-1 to -5 may show cis-oligomerization with TAMPs, whereas the non-classic claudin-11 did not. Claudin-1 and -5 improved enrichment of occludin and tricellulin at cell-cell contacts. The low mobile claudin-1 reduced the membrane mobility of the highly mobile occludin and tricellulin, as studied by fluorescence recovery after photobleaching. Co-transfection of claudin-1 with TAMPs led to changes of the tight junction strand network of this claudin to a more physiological morphology, depicted by freeze-fracture electron microscopy. The results demonstrate multilateral interactions between the tight junction proteins, in which claudins determine the function of TAMPs and vice versa, and provide deeper insights into the tight junction assembly.
Assuntos
Claudinas/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim CaninoRESUMO
Non-pharmaceutical interventions (NPI) have been proven successful in a population-based approach to protect from SARS-CoV-2 transmission during the COVID-19 pandemic. As a consequential-effect, a reduction in the spread of all respiratory viruses has been observed, but the primary factors behind this phenomenon have yet to be identified. We conducted a subgroup analysis of participants from the ELISA study, a prospective longitudinal cohort study on SARS-CoV-2 transmission, at four timepoints from November 2020 - September 2022. The aim was to provide a detailed overview of the circulation of respiratory viruses over 2 years and to identify potential personal risk factors of virus distribution. All participants were screened using qPCR for respiratory viral infections from nasopharyngeal swabs and answered a questionnaire regarding behavioral factors. Several categories of risk factors for the transmission of respiratory viruses were evaluated using a scoring system. In total, 1,124 participants were included in the study, showing high adherence to governmental-introduced NPI. The overall number of respiratory virus infections was low (0-4.9% of participants), with adenovirus (1.7%), rhino-/enterovirus (3.2%) and SARS-CoV-2 (1.2%) being the most abundant. We detected an inverse correlation between the number and intensity of NPI and the number of detected respiratory viruses. More precisely, the attendance of social events and household size was associated with rhino-/enterovirus infection while social contacts were associated with being positive for any virus. NPI introduced during the COVID-19 pandemic reduced the occurrence of seasonal respiratory viruses in our study, showing different risk-factors for enhanced transmission between viruses. Trial registration: DRKS.de, German Clinical Trials Register (DRKS), Identifier: DRKS00023418, Registered on 28 October 2020.
Assuntos
COVID-19 , Infecções Respiratórias , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Estudos Prospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Longitudinais , Fatores de Risco , Idoso , Distanciamento Físico , Adolescente , Adulto Jovem , Alemanha/epidemiologiaRESUMO
Chlamydia pneumoniae infections of the respiratory tract are common and are associated with acute and chronic diseases such as community-acquired pneumonia (CAP) and chronic obstructive pulmonary disease (COPD). Recent studies have shown that reduced environmental oxygen availability promotes chlamydial growth in infected host cells. The underlying mechanisms remain unclear. We performed a targeted siRNA screen coupled with an automated high-throughput microscopic analysis to identify key host cell genes that play a role in promoting the hypoxic growth of C. pneumoniae. A total of 294 siRNAs - targeting 98 selected genes including central mediators of metabolic, trafficking and signaling pathways - were tested on chlamydial inclusion formation in C. pneumoniae infected A549 cells under normoxic (20% O2) and hypoxic (2% O2) conditions 48 h post infection. Evaluation of the different functional clusters of genes revealed that under hypoxic conditions, enhanced growth of C. pneumoniae was centrally mediated by the host cell glycolytic pathway. Inhibition of the phosphofructokinase (PFK), lactate dehydrogenase (LDH), glycerol-3-phosphate dehydrogenase (GPD2) and the forkheadbox O3 (FOXO3) gene-expression by siRNAs abrogated chlamydial progeny. The pivotal role of host cell glycolysis in chlamydial development under hypoxia was further confirmed by pharmacological inhibition of the pathway by 2-fluoro-deoxy-glucose. The results indicate that the microenvironment of the host cell determines the fate of C. pneumoniae by controlling pathogen-induced metabolic pathways.
Assuntos
Chlamydophila pneumoniae/crescimento & desenvolvimento , Chlamydophila pneumoniae/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Oxigênio/metabolismo , Anaerobiose , Linhagem Celular , Glicólise , Humanos , Redes e Vias Metabólicas/genéticaRESUMO
The 2-year SARS-CoV-2 surveillance follow-up of the ELISA cohort shows the successful transition from COVID-19 pandemic to endemic, confirms occupational risk factors in healthcare and identifies household risk factors in a high-incidence period https://bit.ly/43x8q6i.
RESUMO
Current treatment of Chlamydia trachomatis using doxycycline and azithromycin introduces detrimental side effects on the host's microbiota. As a potential alternative treatment, the myxobacterial natural product sorangicin A (SorA) blocks the bacterial RNA polymerase. In this study we analyzed the effectiveness of SorA against C. trachomatis in cell culture, and explanted fallopian tubes and systemic and local treatment in mice, providing also pharmacokinetic data on SorA. Potential side effects of SorA on the vaginal and gut microbiome were assessed in mice and against human-derived Lactobacillus species. SorA showed minimal inhibitory concentrations of 80 ng/mL (normoxia) to 120 ng/mL (hypoxia) against C. trachomatis in vitro and was eradicating C. trachomatis at a concentration of 1 µg/mL from fallopian tubes. In vivo, SorA reduced chlamydial shedding by more than 100-fold within the first days of infection by topical application corresponding with vaginal detection of SorA only upon topical treatment, but not after systemic application. SorA changed gut microbial composition during intraperitoneal application only and did neither alter the vaginal microbiota in mice nor affect growth of human-derived lactobacilli. Additional dose escalations and/or pharmaceutical modifications will be needed to optimize application of SorA and to reach sufficient anti-chlamydial activity in vivo.
RESUMO
Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
Assuntos
Colistina , Lipídeo A , Colistina/farmacologia , Colistina/uso terapêutico , Lipídeo A/química , Lipídeo A/farmacologia , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacter/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVES: Assessment of vancomycin-resistant Enterococcus faecium (VREfm) prevalence upon hospital admission and analysis of risk factors for colonization. METHODS: From 2014 to 2018, patients were recruited within 72 hours of admission to seven participating German university hospitals, screened for VREfm and questioned for potential risk factors (prior multidrug-resistant organism detection, current/prior antibiotic consumption, prior hospital, rehabilitation or long-term care facility stay, international travel, animal contact and proton pump inhibitor [PPI]/antacid therapy). Genotype analysis was done using cgMLST typing. Multivariable analysis was performed. RESULTS: In 5 years, 265 of 17,349 included patients were colonized with VREfm (a prevalence of 1.5%). Risk factors for VREfm colonization were age (adjusted OR [aOR], 1.02; 95% CI, 1.01-1.03), previous (aOR, 2.71; 95% CI, 1.87-3.92) or current (aOR, 2.91; 95% CI, 2.60-3.24) antibiotic treatment, prior multidrug-resistant organism detection (aOR, 2.83; 95% CI, 2.21-3.63), prior stay in a long-term care facility (aOR, 2.19; 95% CI, 1.62-2.97), prior stay in a hospital (aOR, 2.91; 95% CI, 2.05-4.13) and prior consumption of PPI/antacids (aOR, 1.29; 95% CI, 1.18-1.41). Overall, the VREfm admission prevalence increased by 33% each year and 2% each year of life. 250 of 265 isolates were genotyped and 141 (53.2%) of the VREfm were the emerging ST117. Multivariable analysis showed that ST117 and non-ST117 VREfm colonized patients differed with respect to admission year and prior multidrug-resistant organism detection. DISCUSSION: Age, healthcare contacts and antibiotic and PPI/antacid consumption increase the individual risk of VREfm colonization. The VREfm admission prevalence increase in Germany is mainly driven by the emergence of ST117.
Assuntos
Infecção Hospitalar , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Animais , Vancomicina/farmacologia , Hospitais Universitários , Estudos Transversais , Prevalência , Antiácidos , Antibacterianos/farmacologia , Fatores de Risco , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologiaRESUMO
OBJECTIVES: Staphylococcus aureus bloodstream infection (SAB) is a common and severe infection. This study aims to describe temporal trends in numbers, epidemiological characteristics, clinical manifestations, and outcomes of SAB. METHODS: We performed a post-hoc analysis of three prospective SAB cohorts at the University Medical Centre Freiburg between 2006 and 2019. We validated our findings in a large German multi-centre cohort of five tertiary care centres (R-Net consortium, 2017-2019). Time-dependent trends were estimated using Poisson or beta regression models. RESULTS: We included 1797 patients in the mono-centric and 2336 patients in the multi-centric analysis. Overall, we observed an increasing number of SAB cases over 14 years (6.4%/year and 1000 patient days, 95% CI: 5.1% to 7.7%), paralleled by an increase in the proportion of community-acquired SAB (4.9%/year [95% CI: 2.1% to 7.8%]) and a decrease in the rate of methicillin-resistant-SAB (-8.5%/year [95% CI: -11.2% to -5.6%]). All of these findings were confirmed in the multi-centre validation cohort (6.2% cases per 1000 patient cases/year [95% CI: -0.6% to 12.6%], community-acquired-SAB 8.7% [95% CI: -1.2% to 19.6%], methicillin-resistant S. aureus-SAB -18.6% [95% CI: -30.6 to -5.8%]). Moreover, we found an increasing proportion of patients with multiple risk factors for complicated/difficult-to-treat SAB (8.5%/year, 95% CI: 3.6% to 13.5%, p < 0.001), alongside an overall higher level of comorbidities (Charlson comorbidity score 0.23 points/year, 95% CI: 0.09 to 0.37, p 0.005). At the same time, the rate of deep-seated foci such as osteomyelitis or deep-seated abscesses significantly increased (6.7%, 95% CI: 3.9% to 9.6%, p < 0.001). A reduction of in-hospital mortality by 0.6% per year (95% CI: 0.08% to 1%) was observed in the subgroup of patients with infectious diseases consultations. DISCUSSION: We found an increasing number of SAB combined with a significant increase in comorbidities and complicating factors in tertiary care centres. The resulting challenges in securing adequate SAB management in the face of high patient turnover will become an important task for physicians.
Assuntos
Bacteriemia , Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Centros de Atenção Terciária , Bacteriemia/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Comunitárias Adquiridas/microbiologia , Antibacterianos/uso terapêuticoRESUMO
BACKGROUND: Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. METHODS: A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. RESULTS: The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. CONCLUSIONS: Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated.
Assuntos
Antibacterianos , Infecções por Haemophilus , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Haemophilus/genética , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Humanos , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: The burden of bloodstream infections remains high worldwide and cannot be confined to short-term in-hospital mortality. We aimed to develop scores to predict short-term and long-term mortality in patients with bloodstream infections. METHODS: The Bloodstream Infection due to Multidrug-resistant Organisms: Multicenter Study on Risk Factors and Clinical Outcomes (BLOOMY) study is a prospective, multicentre cohort study at six German tertiary care university hospitals to develop and validate two scores assessing 14-day and 6-month mortality in patients with bloodstream infections. We excluded patients younger than 18 years or who were admitted to an ophthalmology or psychiatry ward. Microbiological, clinical, laboratory, treatment, and survival data were prospectively collected on day 0 and day 3 and then from day 7 onwards, weekly. Participants were followed up for 6 months. All patients in the derivation cohort who were alive on day 3 were included in the analysis. Predictive scores were developed using logistic regression and Cox proportional hazards models with a machine-learning approach. Validation was completed using the C statistic and predictive accuracy was assessed using sensitivity, specificity, and predictive values. FINDINGS: Between Feb 1, 2017, and Jan 31, 2019, 2568 (61·5%) of 4179 eligible patients were recruited into the derivation cohort. The in-hospital mortality rate was 23·75% (95% CI 22·15-25·44; 610 of 2568 patients) and the 6-month mortality rate was 41·55% (39·54-43·59; 949 of 2284). The model predictors for 14-day mortality (C statistic 0·873, 95% CI 0·849-0·896) and 6-month mortality (0·807, 0·784-0·831) included age, body-mass index, platelet and leukocyte counts, C-reactive protein concentrations, malignancy (ie, comorbidity), in-hospital acquisition, and pathogen. Additional predictors were, for 14-day mortality, mental status, hypotension, and the need for mechanical ventilation on day 3 and, for 6-month mortality, focus of infection, in-hospital complications, and glomerular filtration rate at the end of treatment. The scores were validated in a cohort of 1023 patients with bloodstream infections, recruited between Oct 9, 2019, and Dec 31, 2020. The BLOOMY 14-day score showed a sensitivity of 61·32% (95% CI 51·81-70·04), a specificity of 86·36% (83·80-88·58), a positive predictive value (PPV) of 37·57% (30·70-44·99), and a negative predictive value (NPV) of 94·35% (92·42-95·80). The BLOOMY 6-month score showed a sensitivity of 69·93% (61·97-76·84), a specificity of 66·44% (61·86-70·73), a PPV of 40·82% (34·85-47·07), and a NPV of 86·97% (82·91-90·18). INTERPRETATION: The BLOOMY scores showed good discrimination and predictive values and could support the development of protocols to manage bloodstream infections and also help to estimate the short-term and long-term burdens of bloodstream infections. FUNDING: DZIF German Center for Infection Research. TRANSLATION: For the German translation of the abstract see Supplementary Materials section.
Assuntos
Sepse , Adulto , Estudos de Coortes , Humanos , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos ProspectivosRESUMO
To analyse the epidemiology and population structure of third-generation cephalosporin-resistant (3GCR) and carbapenem-resistant (CR) Klebsiella pneumoniae complex isolates, patients were screened for rectal colonisation with 3GCR/CR K. pneumoniae complex on admission to six German university hospitals (2016-2019). Also collected were 3GCR/CR and susceptible K. pneumoniae isolates from patients with bloodstream infections (2016-2018). Whole-genome sequencing was performed followed by multilocus sequencing typing (MLST), core-genome MLST, and resistome and virulome analysis. The admission prevalence of 3GCR K. pneumoniae complex isolates during the 4-year study period was 0.8%, and 1.0 bloodstream infection per 1000 patient admissions was caused by K. pneumoniae complex (3GCR prevalence, 15.1%). A total of seven K. pneumoniae complex bloodstream isolates were CR (0.8%). The majority of colonising and bloodstream 3GCR isolates were identified as K. pneumoniae, 96.7% and 98.8%, respectively; the remainder were K. variicola and K. quasipneumoniae. cgMLST showed a polyclonal population of colonising and bloodstream isolates, which was also reflected by MLST and virulome analysis. CTX-M-15 was the most prevalent extended-spectrum beta-lactamase, and 29.7% of the colonising and 48.8% of the bloodstream isolates were high-risk clones. The present study provides an insight into the polyclonal 3GCR K. pneumoniae population in German hospitals.
RESUMO
With newly rising coronavirus disease 2019 (COVID-19) cases, important data gaps remain on (i) long-term dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates in fixed cohorts (ii) identification of risk factors, and (iii) establishment of effective surveillance strategies. By polymerase chain reaction and antibody testing of 1% of the local population and >90,000 app-based datasets, the present study surveilled a catchment area of 300,000 inhabitants from March 2020 to February 2021. Cohort (56% female; mean age, 45.6 years) retention was 75 to 98%. Increased risk for seropositivity was detected in several high-exposure groups, especially nurses. Unreported infections dropped from 92 to 29% during the study. "Contact to COVID-19-affected" was the strongest risk factor, whereas public transportation, having children in school, or tourism did not affect infection rates. With the first SARS-CoV-2 cohort study, we provide a transferable model for effective surveillance, enabling monitoring of reinfection rates and increased preparedness for future pandemics.
RESUMO
In patients with severe #COVID19, increased levels of autoantibodies against PAR1 were found. These might serve as allosteric agonists of PAR1 on endothelial cells and platelets, and thus might contribute to the pathogenesis of microthrombosis in COVID-19. https://bit.ly/3pqM9Vv.
RESUMO
Urogenital infections with Chlamydia trachomatis (C. trachomatis) are the most common bacterial sexually transmitted diseases worldwide. As an obligate intracellular bacterium, chlamydial replication and pathogenesis depends on the host metabolic activity. First-line antimicrobials such as doxycycline (DOX) and azithromycin (AZM) have been recommended for the treatment of C. trachomatis infection. However, accumulating evidence suggests that treatment with AZM causes higher rates of treatment failure than DOX. Here, we show that an inferior efficacy of AZM compared to DOX is associated with the metabolic status of host cells. Chlamydial metabolism and infectious progeny of C. trachomatis were suppressed by therapeutic relevant serum concentrations of DOX or AZM. However, treatment with AZM could not suppress host cell metabolic pathways, such as glycolysis and mitochondrial oxidative phosphorylation, which are manipulated by C. trachomatis. The host cell metabolic activity was associated with a significant reactivation of C. trachomatis after removal of AZM treatment, but not after DOX treatment. Furthermore, AZM insufficiently attenuated interleukin (IL)-8 expression upon C. trachomatis infection and higher concentrations of AZM above therapeutic serum concentration were required for effective suppression of IL-8. Our data highlight that AZM is not as efficient as DOX to revert host metabolism in C. trachomatis infection. Furthermore, insufficient treatment with AZM failed to inhibit chlamydial reactivation as well as C. trachomatis induced cytokine responses. Its functional relevance and the impact on disease progression have to be further elucidated in vivo.
RESUMO
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with ß-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of ß-lactam antimicrobials. However, during treatment with ß-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with ß-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate ß-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with ß-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, ß-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with ß-lactam antimicrobials.