Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 30(3): 717-736, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514942

RESUMO

RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.


Assuntos
Arabidopsis/metabolismo , Bryopsida/metabolismo , Reparo do DNA/genética , Proteínas de Plantas/metabolismo , RecQ Helicases/metabolismo , Arabidopsis/genética , Bryopsida/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , RecQ Helicases/genética
2.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645954

RESUMO

Tissue-resident macrophages are key players in inflammatory processes, and their activation and functionality are crucial in health and disease. Numerous diseases are associated with alterations in homeostasis or dysregulation of the innate immune system, including allergic reactions, autoimmune diseases, and cancer. Macrophages are a prime target for drug discovery due to their major regulatory role in health and disease. Currently, the main sources of macrophages used for therapeutic compound screening are primary cells isolated from blood or tissue or immortalized or neoplastic cell lines (e.g., THP-1). Here, we describe an improved method to employ induced pluripotent stem cells (iPSCs) for the high-yield, large-scale production of cells resembling tissue-resident macrophages. For this, iPSC-derived macrophage-like cells are thoroughly characterized to confirm their cell identity and thus their suitability for drug screening purposes. These iPSC-derived macrophages show strong cellular identity with primary macrophages and recapitulate key functional characteristics, including cytokine release, phagocytosis, and chemotaxis. Furthermore, we demonstrate that genetic modifications can be readily introduced at the macrophage-like progenitor stage in order to interrogate drug target-relevant pathways. In summary, this novel method overcomes previous shortcomings with primary and leukemic cells and facilitates large-scale production of genetically modified iPSC-derived macrophages for drug screening applications.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Quimiotaxia/fisiologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia
3.
Cancer Res ; 82(14): 2552-2564, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584009

RESUMO

The therapeutic benefit of approved BRAF and MEK inhibitors (BRAFi/MEKi) in patients with brain metastatic BRAF V600E/K-mutated melanoma is limited and transient. Resistance largely occurs through the restoration of MAPK signaling via paradoxical BRAF activation, highlighting the need for more effective therapeutic options. Aiming to address this clinical challenge, we characterized the activity of a potent, brain-penetrant paradox breaker BRAFi (compound 1a, C1a) as first-line therapy and following progression upon treatment with approved BRAFi and BRAFi/MEKi therapies. C1a activity was evaluated in vitro and in vivo in melanoma cell lines and patient-derived models of BRAF V600E-mutant melanoma brain metastases following relapse after treatment with BRAFi/MEKi. C1a showed superior efficacy compared with approved BRAFi in both subcutaneous and brain metastatic models. Importantly, C1a manifested potent and prolonged antitumor activity even in models that progressed on BRAFi/MEKi treatment. Analysis of mechanisms of resistance to C1a revealed MAPK reactivation under drug treatment as the predominant resistance-driving event in both subcutaneous and intracranial tumors. Specifically, BRAF kinase domain duplication was identified as a frequently occurring driver of resistance to C1a. Combination therapies of C1a and anti-PD-1 antibody proved to significantly reduce disease recurrence. Collectively, these preclinical studies validate the outstanding antitumor activity of C1a in brain metastasis, support clinical investigation of this agent in patients pretreated with BRAFi/MEKi, unveil genetic drivers of tumor escape from C1a, and identify a combinatorial treatment that achieves long-lasting responses. SIGNIFICANCE: A brain-penetrant BRAF inhibitor demonstrates potent activity in brain metastatic melanoma, even upon relapse following standard BRAF inhibitor therapy, supporting further investigation into its clinical utility.


Assuntos
Neoplasias Encefálicas , Melanoma , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf
4.
Front Immunol ; 11: 617860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613545

RESUMO

Microglia are key in the homeostatic well-being of the brain and microglial dysfunction has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Due to the many limitations to study microglia in situ or isolated for large scale drug discovery applications, there is a high need to develop robust and scalable human cellular models of microglia with reliable translatability to the disease. Here, we describe the generation of microglia-like cells from human induced pluripotent stem cells (iPSC) with distinct phenotypes for mechanistic studies in AD. We started out from an established differentiation protocol to generate primitive macrophage precursors mimicking the yolk sac ontogeny of microglia. Subsequently, we tested 36 differentiation conditions for the cells in monoculture where we exposed them to various combinations of media, morphogens, and extracellular matrices. The optimized protocol generated robustly ramified cells expressing key microglial markers. Bulk mRNA sequencing expression profiles revealed that compared to cells obtained in co-culture with neurons, microglia-like cells derived from a monoculture condition upregulate mRNA levels for Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), which is reminiscent to the previously described disease-associated microglia. TREM2 is a risk gene for AD and an important regulator of microglia. The regulatory function of TREM2 in these cells was confirmed by comparing wild type with isogenic TREM2 knock-out iPSC microglia. The TREM2-deficient cells presented with stronger increase in free cytosolic calcium upon stimulation with ATP and ADP, as well as stronger migration towards complement C5a, compared to TREM2 expressing cells. The functional differences were associated with gene expression modulation of key regulators of microglia. In conclusion, we have established and validated a work stream to generate functional human iPSC-derived microglia-like cells by applying a directed and neuronal co-culture independent differentiation towards functional phenotypes in the context of AD. These cells can now be applied to study AD-related disease settings and to perform compound screening and testing for drug discovery.


Assuntos
Doença de Alzheimer , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Diferenciação Celular , Células Cultivadas , Predisposição Genética para Doença , Humanos , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA