Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637648

RESUMO

Endogenous mediators regulating acute inflammatory responses in both the induction and resolution phases of inflammatory processes are pivotal in host defense and tissue homeostasis. Recent studies have identified neuronal guidance proteins characterized in axonal development that display immunomodulatory functions. Here, we identify the neuroimmune guidance cue Semaphorin 7A (Sema7A), which appears to link macrophage (MΦ) metabolic remodeling to inflammation resolution. Sema7A orchestrated MΦ chemotaxis and chemokinesis, activated MΦ differentiation and polarization toward the proresolving M2 phenotype, and promoted leukocyte clearance. Peritoneal MΦSema7A-/- displayed metabolic reprogramming, characterized by reductions in fatty acid oxidation and oxidative phosphorylation, increases in glycolysis and the pentose phosphate pathway, and truncation of the tricarboxylic acid cycle, which resulted in increased levels of the intermediates succinate and fumarate. The low accumulation of citrate in MΦSema7A-/- correlated with the decreased synthesis of prostaglandins, leading to a reduced impact on lipid-mediator class switching and the generation of specialized pro resolving lipid mediators. Signaling network analysis indicated that Sema7A induced the metabolic reprogramming of MΦ by activating the mTOR- and AKT2-signaling pathways. Administration of Sema7ASL4cd orchestrated the resolution response to tissue homeostasis by shortening the resolution interval, promoting tissue protection in murine peritonitis, and enhancing survival in polymicrobial sepsis.


Assuntos
Antígenos CD/genética , Inflamação/etiologia , Semaforinas/genética , Adolescente , Animais , Antígenos CD/metabolismo , Biomarcadores , Plasticidade Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunomodulação , Lactente , Recém-Nascido , Inflamação/metabolismo , Inflamação/mortalidade , Inflamação/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Fagocitose/imunologia , Prognóstico , Semaforinas/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais
2.
J Clin Monit Comput ; 38(2): 385-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37515662

RESUMO

As electrical activity in the brain has complex and dynamic properties, the complexity measure permutation entropy (PeEn) has proven itself to reliably distinguish consciousness states recorded by the EEG. However, it has been shown that the focus on specific ordinal patterns instead of all of them produced similar results. Moreover, parameter settings influence the resulting PeEn value. We evaluated the impact of the embedding dimension m and the length of the EEG segment on the resulting PeEn. Moreover, we analysed the probability distributions of monotonous and non-occurring ordinal patterns in different parameter settings. We based our analyses on simulated data as well as on EEG recordings from volunteers, obtained during stable anaesthesia levels at defined, individualised concentrations. The results of the analysis on the simulated data show a dependence of PeEn on different influencing factors such as window length and embedding dimension. With the EEG data, we demonstrated that the probability P of monotonous patterns performs like PeEn in lower embedding dimension (m = 3, AUC = 0.88, [0.7, 1] in both), whereas the probability P of non-occurring patterns outperforms both methods in higher embedding dimensions (m = 5, PeEn: AUC = 0.91, [0.77, 1]; P(non-occurring patterns): AUC = 1, [1, 1]). We showed that the accuracy of PeEn in distinguishing consciousness states changes with different parameter settings. Furthermore, we demonstrated that for the purpose of separating wake from anaesthesia EEG solely pieces of information used for PeEn calculation, i.e., the probability of monotonous patterns or the number of non-occurring patterns may be equally functional.


Assuntos
Anestesia , Estado de Consciência , Humanos , Entropia , Encéfalo , Probabilidade , Eletroencefalografia/métodos
3.
Eur J Clin Invest ; 53(6): e13963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36718989

RESUMO

BACKGROUND: In severe acute respiratory distress syndrome (ARDS), venovenous extracorporeal membrane oxygenation (vvECMO) can be a lifesaver. However, anticoagulation therapy is mandatory because the nonendothelial extracorporeal surface increases the risk of thromboembolic problems. Heparin is still the most common anticoagulant, but argatroban could be an alternative. This work investigates whether argatroban offers a therapeutic advantage over heparin during vvECMO. METHODS: We performed a retrospective cohort study of patients who underwent vvECMO for severe ARDS and received heparin or argatroban as anticoagulation therapy. Demographic variables, intensive care unit (ICU) treatment and outcome parameters were evaluated. The primary outcome parameter was the operating time of the membrane oxygenator normalized to the duration of vvECMO treatment. Secondary outcome parameters were transfusion requirements normalized to the duration of vvECMO therapy. RESULTS: Fifty seven patients from January 2019 to February 2021 underwent vvECMO and were included in this study. Thirty three patients received heparin and 24 patients argatroban as anticoagulatory therapy. The groups did not differ in demographics, ICU scoring systems, or comorbidities. Platelet counts and partial prothrombin time did not differ between the two groups during the first 6 days of vvECMO. The argatroban group had lower requirements for red blood cells, platelets and fresh frozen plasma. The mean runtime of the individual membrane oxygenator increased from 12.3 days (heparin group) to 16.6 days in the argatroban group. CONCLUSIONS: Our findings suggest that argatroban can be considered as anticoagulant during vvECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Oxigenadores de Membrana , Estudos Retrospectivos , Heparina/uso terapêutico , Anticoagulantes , Síndrome do Desconforto Respiratório/tratamento farmacológico
4.
Respir Res ; 24(1): 230, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752522

RESUMO

BACKGROUND: Venovenous extracorporeal membrane oxygenation (vvECMO) is used to treat hypoxia in patients with severe acute respiratory distress syndrome (ARDS). Nevertheless, uncertainty exists regarding the optimal timing of initiation of vvECMO therapy. We aimed to investigate the association between number of days of invasive mechanical ventilation (IMV) prior to vvECMO implantation and mortality. METHODS: In this retrospective observational study, we included patients treated at an academic intensive care unit with vvECMO for severe ARDS. The primary outcome was all-cause 28-day mortality. We conducted a multivariate logistic regression analysis to estimate the association between number of days of IMV prior to vvECMO implantation and mortality after adjustment for confounders. RESULTS: Out of 274 patients who underwent ECMO for severe ARDS, 158 patients (median age: 58 years) with relevant data were included in the analysis. The mean duration of IMV prior to vvECMO was significantly shorter in survivors than in nonsurvivors [survivors median: 1; interquartile range: 1-3; non-survivors median 4; interquartile range: 1-5.75; p = 0.0001). Logistic regression showed an association between the duration of ventilation prior to vvECMO and patient mortality. The odds ratio for the all-cause 28-day mortality and in-hospital mortality was significantly reduced in patients who received vvECMO within the first 5 days of IMV. CONCLUSIONS: Early vvECMO implantation may be associated with lower mortality in ARDS.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Pessoa de Meia-Idade , Mortalidade Hospitalar , Respiração Artificial , Estudos Retrospectivos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/etiologia
5.
Proc Natl Acad Sci U S A ; 116(41): 20623-20634, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548397

RESUMO

Targeting metabolism through bioactive key metabolites is an upcoming future therapeutic strategy. We questioned how modifying intracellular lipid metabolism could be a possible means for alleviating inflammation. Using a recently developed chemical probe (SH42), we inhibited distal cholesterol biosynthesis through selective inhibition of Δ24-dehydrocholesterol reductase (DHCR24). Inhibition of DHCR24 led to an antiinflammatory/proresolving phenotype in a murine peritonitis model. Subsequently, we investigated several omics layers in order to link our phenotypic observations with key metabolic alterations. Lipidomic analysis revealed a significant increase in endogenous polyunsaturated fatty acid (PUFA) biosynthesis. These data integrated with gene expression analysis, revealing increased expression of the desaturase Fads6 and the key proresolving enzyme Alox-12/15 Protein array analysis, as well as immune cell phenotype and functional analysis, substantiated these results confirming the antiinflammatory/proresolving phenotype. Ultimately, lipid mediator (LM) analysis revealed the increased production of bioactive lipids, channeling the observed metabolic alterations into a key class of metabolites known for their capacity to change the inflammatory phenotype.


Assuntos
Anti-Inflamatórios/farmacologia , Colesterol/biossíntese , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Lipídeos/análise , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Peritonite/tratamento farmacológico , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Lipogênese , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Peritonite/patologia , Fenótipo
6.
J Intensive Care Med ; 36(6): 681-688, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33663244

RESUMO

BACKGROUND: The COVID-19 pandemic reached Germany in spring 2020. No proven treatment for SARS-CoV-2 was available at that time, especially for severe COVID-19-induced ARDS. We determined whether the infusion of mesenchymal stromal cells (MSCs) would help to improve pulmonary function and overall outcome in patients with severe COVID-19 ARDS. We offered MSC infusion as an extended indication to all critically ill COVID-19 patients with a Horovitz index <100. We treated 5 out of 23 patients with severe COVID-19 ARDS with an infusion of MSCs. One million MSCs/kg body weight was infused over 30 minutes, and the process was repeated in 3 patients twice and in 2 patients 3 times. RESULT: Four out of 5 MSC-treated patients compared to 50% of control patients (9 out of 18) received ECMO support (80%). The MSC group showed a higher Murray score on admission than control patients, reflecting more severe pulmonary compromise (3.5 ± 0.2 versus 2.8 ± 0.3). MSC infusion was safe and well tolerated. The MSC group had a significantly higher Horovitz score on discharge than the control group. Compared to controls, patients with MSC treatment showed a significantly lower Murray score upon discharge than controls. In the MSC group, 4 out of 5 patients (80%) survived to discharge and exhibited good pulmonary function, whereas only 8 out of 18 patients (45%) in the control group survived to discharge. CONCLUSION: MSC infusion is a safe treatment for COVID-19 ARDS that improves pulmonary function and overall outcome in this patient population.


Assuntos
COVID-19/complicações , COVID-19/terapia , Cuidados Críticos , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Adulto , Idoso , COVID-19/mortalidade , Estudos de Coortes , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Respiração Artificial , Síndrome do Desconforto Respiratório/mortalidade , Taxa de Sobrevida , Resultado do Tratamento
7.
Crit Care Med ; 47(5): e420-e427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730441

RESUMO

OBJECTIVES: Sepsis is associated with a systemic inflammatory reaction, which can result in a life-endangering organ dysfunction. Pro-inflammatory responses during sepsis are characterized by increased activation of leukocytes and platelets, formation of platelet-neutrophil aggregates, and cytokine production. Sequestration of platelet-neutrophil aggregates in the microvasculature contributes to tissue damage during sepsis. At present no effective therapeutic strategy to ameliorate these events is available. In this preclinical pilot study, a novel anti-inflammatory approach was evaluated, which targets nucleoside triphosphate hydrolase activity toward activated platelets via a recombinant fusion protein combining a single-chain antibody against activated glycoprotein IIb/IIIa and the extracellular domain of CD39 (targ-CD39). DESIGN: Experimental animal study and cell culture study. SETTING: University-based experimental laboratory. SUBJECTS: Human dermal microvascular endothelial cells 1, human platelets and neutrophils, and C57BL/6NCrl mice. INTERVENTIONS: Platelet-leukocyte-endothelium interactions were evaluated under inflammatory conditions in vitro and in a murine lipopolysaccharide-induced sepsis model in vivo. The outcome of polymicrobial sepsis was evaluated in a murine cecal ligation and puncture model. To evaluate the anti-inflammatory potential of activated platelet targeted nucleoside triphosphate hydrolase activity, we employed a potato apyrase in vitro and in vivo, as well as targ-CD39 and as a control, nontarg-CD39 in vivo. MEASUREMENTS AND MAIN RESULTS: Under conditions of sepsis, agents with nucleoside triphosphate hydrolase activity decreased platelet-leukocyte-endothelium interaction, transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage. Targ-CD39 had the strongest effect on these variables and retained hemostasis in contrast to nontarg-CD39 and potato apyrase. Most importantly, targ-CD39 improved survival in the cecal ligation and puncture model to a stronger extent then nontarg-CD39 and potato apyrase. CONCLUSIONS: Targeting nucleoside triphosphate hydrolase activity (CD39) toward activated platelets is a promising new treatment concept to decrease systemic inflammation and mortality of sepsis. This innovative therapeutic approach warrants further development toward clinical application.


Assuntos
Plaquetas/metabolismo , Células Endoteliais/metabolismo , Sepse/imunologia , Adenosina Trifosfatases/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Projetos Piloto
9.
Hepatology ; 63(5): 1689-705, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26573873

RESUMO

UNLABELLED: Hepatic ischemia/reperfusion (I/R) is a major adverse reaction to liver transplantation, hemorrhagic shock, or resection. Recently, the anti-inflammatory properties of the axonal guidance cue netrin-1 were reported. Here, we demonstrate that netrin-1 also impacts the resolution of inflammation and promotes hepatic repair and regeneration during liver I/R injury. In initial studies, we investigated the induction of netrin-1 and its receptors in murine liver tissues after I/R injury. Hepatic I/R injury was performed in mice with a partial genetic netrin-1 deficiency (Ntn1(+/-) ) or wild-type C57BL/6 treated with exogenous netrin-1 to examine the endogenous and therapeutically administered impact of netrin-1. These investigations were corroborated by studies determining the characteristics of intravascular leukocyte flow, clearance of apoptotic neutrophils (polymorphonuclear cells [PMNs]), production of specialized proresolving lipid mediators (SPMs), generation of specific growth factors contributing to the resolution of inflammation, and liver repair. Hepatic I/R was associated with a significant reduction of netrin-1 transcript and protein in murine liver tissue. Subsequent studies in netrin-1-deficient mice revealed lower efficacies in reducing PMN infiltration, proinflammatory cytokine levels, and hepatic-specific injury enzymes. Conversely, mice treated with exogenous netrin-1 exhibited increased liver protection and repair, reducing neutrophil influx into the injury site, decreasing proinflammatory mediators, increasing efferocytosis of apoptotic PMNs, and stimulating local endogenous biosynthesis of SPMs and the generation of specific growth factors. Finally, genetic studies implicated the A2B adenosine receptor in netrin-1-mediated protection during hepatic I/R injury. CONCLUSION: The present study indicates a previously unrecognized role for netrin-1 in liver protection and its contribution to tissue homeostasis and regeneration.


Assuntos
Regeneração Hepática , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Hepatite/fisiopatologia , Humanos , Lipoxinas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Netrina , Netrina-1 , Neutrófilos/fisiologia , Receptores de Superfície Celular/fisiologia , Traumatismo por Reperfusão/fisiopatologia
10.
Crit Care Med ; 42(9): e610-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25029243

RESUMO

OBJECTIVE: Liver ischemia and reperfusion injury is a common source of significant morbidity and mortality following liver transplantation, hemorrhagic shock, or major hepatic surgery. Based on studies showing a critical role for the neuronal guidance receptor neogenin (Neo1) outside the nervous system in mediating tissue adaption during acute inflammation, we hypothesized that Neo1 enhances hepatic ischemia and reperfusion injury. DESIGN: Animal study. SETTING: University-based experimental laboratory. SUBJECTS: Wid-type, neogenin deficient and chimeric mice. INTERVENTIONS: Neogenin expression was evaluated during inflammatory stimulation in vitro and during ischemia and reperfusion injury in vivo, intravital microscopy performed to study intravascular flow characteristics. The extent of liver injury was evaluated using histology, serum levels of lactate dehydrogenase, aspartate, and alanine aminotransferase. The functional role of Neo1 during liver IR was evaluated in mice with gene targeted repression of neogenin (Neo1-/-), bone marrow chimeric animals and controls. In addition, functional inhibition of neogenin was performed using antibody injection. MEASUREMENTS AND MAIN RESULTS: We observed an induction of Neo1 during inflammation in vitro and ischemia and reperfusion in vivo. Intravital microscopy demonstrated a decreased ability of Neo1 leukocytes to attach to endothelial vascular wall during inflammation. Subsequent studies in Neo1 mice showed attenuated serum levels of lactate dehydrogenase, aspartate, alanine, and proinflammatory cytokines during hepatic ischemia and reperfusion injury. This was associated with improved hepatic histology scores. Studies in chimeric animals demonstrated that the hematopoietic Neo1 expression to be crucial for the observed results. Treatment with an anti-Neo1 antibody resulted in a significant reduction of experimental hepatic ischemia and reperfusion injury, involving attenuated variable of lactate dehydrogenase, alanine, aspartate, and cytokine levels. CONCLUSIONS: These data provide a unique role for Neo1 in the development of hepatic ischemia and reperfusion injury and identified Neo1 as a potential target to prevent liver dysfunction in the future.


Assuntos
Hepatopatias/epidemiologia , Proteínas de Membrana/biossíntese , Traumatismo por Reperfusão/prevenção & controle , Animais , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo
11.
Intensive Care Med Exp ; 12(1): 55, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874694

RESUMO

BACKGROUND: Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly impacts outcomes in the critically ill. METHODS: An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional statistical methods with the EBM to gain a detailed understanding of AKI risk factors. RESULTS: Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as significant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg. CONCLUSION: Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, providing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, effectively overcoming the limitations of traditional statistical models.

12.
ACS Mater Au ; 4(3): 286-299, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38737117

RESUMO

Fundamental research campaigns in electrocatalysis often involve the use of model systems, such as single crystals or magnetron-sputtered thin films (single metals or metal alloys). The downsides of these approaches are that oftentimes only a limited number of compositions are picked and tested (guided by chemical intuition) and that the validity of trends is not verified under operating conditions typically present in real devices. These together can lead to deficient conclusions, hampering the direct application of newly discovered systems in real devices. In this contribution, the stability of magnetron-sputtered bimetallic PtxRuy thin film electrocatalysts (0 at. % to 100 at. % Ru content) along with three commercially available carbon-supported counterparts (50-67 at. % Ru content) was mapped under electrocatalytic conditions in acidic electrolytes using online ICP-MS. We found several differences between the two systems in the amount of metals dissolved along with the development of the morphology and composition. While the Pt-rich PtxRuy compositions remained unchanged, 30-50 nm diameter surface pits were detected in the case of the Ru-rich sputtered thin films. Contrastingly, the surface of the carbon-supported NPs enriched in Pt accompanied by the leaching of a significant amount of Ru from the alloy structure was observed. Change in morphology was accompanied by a mass loss reaching around 1-2 wt % in the case of the sputtered samples and almost 10 wt % for the NPs. Since PtxRuy has prime importance in driving alcohol oxidation reactions, the stability of all investigated alloys was screened in the presence of isopropanol. While Pt dissolution was marginally affected by the presence of isopropanol, several times higher Ru dissolution was detected, especially in the case of the Ru-rich compositions. Our results underline that trends in terms of electrocatalytic activity and stability cannot always be transferred from model samples to systems that are closer to the ones applied in real devices.

13.
Adv Sci (Weinh) ; : e2402991, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874424

RESUMO

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

15.
J Phys Chem Lett ; 14(20): 4644-4651, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167107

RESUMO

Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.

16.
Front Immunol ; 14: 1251026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094294

RESUMO

Introduction: The study explores the role of endothelial Semaphorin 7A (SEMA7A) in inflammatory processes. SEMA7A is known for enhancing inflammation during tissue hypoxia and exhibiting anti-inflammatory properties in the intestinal system during colitis. This research extends the understanding of SEMA7A's function by examining its role in inflammatory peritonitis and intestinal inflammation. Methods: The research involved inducing peritonitis in SEMA7A knockout (SEMA7A-/-) and wild-type (WT) animals through Zymosan A (ZyA) injection. The inflammatory response was assessed by measuring cell count and cytokine release. In parallel, the study investigated the expression of SEMA7A in intestinal epithelial cells under inflammatory stimuli and its impact on interleukin 10 (IL-10) production using an in vitro co-culture model of monocytes and epithelial cells. Additionally, the distribution of SEMA7A target receptors, particularly ITGAV/ITGB1 (CD51/CD29), was analyzed in WT animals. Results: The results revealed that SEMA7A-/- animals exhibited increased inflammatory peritonitis compared to the WT animals. Inflammatory conditions in intestinal epithelial cells led to the induction of SEMA7A. The co-culture experiments demonstrated that SEMA7A induced IL-10 production, which depended on integrin receptors and was independent of PLXNC1 expression. Furthermore, ITGAV/ITGB1 emerged as the predominant SEMA7A receptor in the intestinal area of WT animals. Discussion: These findings underscore the multifaceted role of SEMA7A in inflammatory processes. The differential responses in peritonitis and intestinal inflammation suggest that SEMA7A's function is significantly influenced by the expression and distribution of its target receptors within different organ systems. The study highlights the complex and context-dependent nature of SEMA7A in mediating inflammatory responses.


Assuntos
Peritonite , Semaforinas , Animais , Antígenos CD/metabolismo , Integrinas , Interleucina-10/genética , Semaforinas/genética , Semaforinas/metabolismo , Peritonite/induzido quimicamente , Inflamação
17.
Physiol Meas ; 44(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336235

RESUMO

Objective.Left ventricular hypertrophy (LVH) is one of the most severe risk factors in patients with end-stage kidney disease (ESKD) regarding all-cause and cardiovascular mortality. It contributes to the risk of sudden cardiac death which accounts for approximately 25% of deaths in ESKD patients. Electrocardiography (ECG) is the least expensive way to assess whether a patient has LVH, but manual annotation is cumbersome. Thus, an automated approach has been developed to derive ECG-based LVH parameters. The aim of the current study is to compare automatic to manual measurements and to investigate their predictive value for cardiovascular and all-cause mortality.Approach.From the 12-lead 24 h ECG measurements of 301 ESKD patients undergoing haemodialysis, three different LVH parameters were calculated. Peguero-Lo Presti voltage, Cornell voltage, and Sokolow-Lyon voltage were automatically derived and compared to the manual annotations. To determine the agreement between manual and automatic measurements and their predictive value, Bland-Altman plots were created and Cox regression analysis for cardiovascular and all-cause mortality was performed.Main results.The median values for the automatic assessment were: Peguero-Lo Presti voltage 1.76 mV (IQR 1.29-2.55), Cornell voltage 1.14 mV (IQR 0.721-1.66), and Sokolow-Lyon voltage 1.66 mV (IQR 1.08-2.23). The mean differences when compared to the manual measurements were -0.027 mV (0.21 SD), 0.027 mV (0.13 SD) and -0.025 mV (0.24 SD) for Peguero-Lo Presti, Cornell, and Sokolow-Lyon voltage, respectively. The categorial LVH detection based on pre-defined thresholds differed in only 13 cases for all indices between manual and automatic assessment. Proportional hazard ratios only differed slightly in categorial LVH detection between manually and automatically determined LVH parameters; no differences could be found for continuous parameters.Significance.This study provides evidence that automatic algorithms can be as reliable in LVH parameter assessment and risk prediction as manual measurements in ESKD patients undergoing haemodialysis.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico , Eletrocardiografia/métodos , Fatores de Risco , Diálise Renal
18.
iScience ; 26(10): 107775, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736046

RESUMO

High-entropy alloys are claimed to possess superior stability due to thermodynamic contributions. However, this statement mostly lies on a hypothetical basis. In this study, we use on-line inductively coupled plasma mass spectrometer to investigate the dissolution of five representative electrocatalysts in acidic and alkaline media and a wide potential window targeting the most important applications. To address both model and applied systems, we synthesized thin films and carbon-supported nanoparticles ranging from an elemental (Pt) sample to binary (PtRu), ternary (PtRuIr), quaternary (PtRuIrRh), and quinary (PtRuIrRhPd) alloy samples. For certain metals in the high-entropy alloy under alkaline conditions, lower dissolution was observed. Still, the improvement was not striking and can be rather explained by the lowered concentration of elements in the multinary alloys instead of the synergistic effects of thermodynamics. We postulate that this is because of dissolution kinetic effects, which are always present under electrocatalytic conditions, overcompensating thermodynamic contributions.

19.
Adv Sci (Weinh) ; 9(25): e2202803, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780494

RESUMO

Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Difração de Raios X
20.
Transpl Int ; 24(11): 1059-67, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21797939

RESUMO

CYP2D6 is part of the cytochrome P450 system, which catalyzes biotransformation of endogenous substrates and xenobiotics. Approximately 10% of the Caucasian population has two null alleles, resulting in a poor metabolizer (PM) status. Mostly, allele four (CYP2D6*4) is responsible for the PM status, which is suspected to be associated with an accelerated fibrosis progression (FP). The aim of the present study was to analyze the role of the CYP2D6*4 genotype for FP after liver transplantation (LT). Genotypes were determined in liver biopsies (donor) and peripheral blood (recipient) by fluorescence resonance energy transfer. Data were correlated with clinical variables and risk factors for fibrosis. We analyzed 517 LTs performed between 1997 and 2009. Overall donor and recipient allele frequencies were comparable (18.0%, 20.5%; P = 0.43). The donor genotype did not correlate with FP. In contrast, recipients carrying CYP2D6*4, showed a significant higher risk for an accelerated FP (P = 0.011) in HCV positive (P = 0.038) and HCV negative patients (P = 0.033). Results were confirmed by multivariate analysis (Hazard ratio 1.65; P = 0.001). The CYP2D6*4-associated PM status of the donor liver seems to have no influence on FP after LT. Recipients, carrying the allele, have an elevated risk for an accelerated FP.


Assuntos
Citocromo P-450 CYP2D6/genética , Cirrose Hepática/etiologia , Transplante de Fígado/efeitos adversos , Adolescente , Adulto , Idoso , Alelos , Feminino , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/cirurgia , Humanos , Cirrose Hepática/genética , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA