Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Angiogenesis ; 27(3): 293-310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38580869

RESUMO

In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.


Assuntos
Neovascularização Patológica , Animais , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Patológica/patologia , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/patologia , Remodelação Vascular
2.
J Thromb Thrombolysis ; 57(6): 936-946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853210

RESUMO

Inflammation including immunothrombosis by neutrophil extracellular traps (NETs) has important implications in acute ischemic stroke and can affect reperfusion status, susceptibility to stroke associated infections (SAI) as well as functional clinical outcome. NETs were shown to be prevalent in stroke thrombi and NET associated markers were found in stroke patients' blood. However, little is known whether blood derived NET markers reflect the amount of NETs in thrombi. Conclusions from blood derived markers to thrombus composition might open avenues for novel strategies in diagnostic and therapeutic approaches. We prospectively recruited 166 patients with acute ischemic stroke undergoing mechanical thrombectomy between March 2018 and May 2021. Available thrombi (n = 106) were stained for NET markers DNA-histone-1 complexes and myeloperoxidase (MPO). Cell free DNA (cfDNA), deoxyribonuclease (DNase) activity, MPO-histone complexes and a cytokine-panel were measured before thrombectomy and after seven days. Clinical data, including stroke etiology, reperfusion status, SAI and functional outcome after rehabilitation, were collected of all patients. NET markers were present in all thrombi. At onset the median concentration of cfDNA in blood was 0.19 µg/ml increasing to 0.30 µg/ml at 7 days. Median DNase activity at onset was 4.33 pmol/min/ml increasing to 4.96 pmol/min/ml at 7 days. Within thrombi DNA-histone-1 complexes and MPO correlated with each other (ρ = 0.792; p < 0.001). Moreover, our study provides evidence for an association between the amount of NETs and endogenous DNase activity in blood with amounts of NETs in cerebral thrombi. However, these associations need to be confirmed in larger cohorts, to investigate the potential clinical implications for individualized therapeutic and diagnostic approaches in acute ischemic stroke.


Assuntos
Biomarcadores , Armadilhas Extracelulares , AVC Isquêmico , Humanos , Armadilhas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Idoso , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Peroxidase/sangue , Idoso de 80 Anos ou mais , Ácidos Nucleicos Livres/sangue , Trombectomia , Trombose/sangue , Trombose/diagnóstico , Neutrófilos/metabolismo
3.
Am J Pathol ; 192(2): 239-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767811

RESUMO

Human precision-cut lung slices (PCLS) have proven to be an invaluable tool for numerous toxicologic, pharmacologic, and immunologic studies. Although a cultivation period of <1 week is sufficient for most studies, modeling of complex disease mechanisms and investigating effects of long-term exposure to certain substances require cultivation periods that are much longer. So far, data regarding tissue integrity of long-term cultivated PCLS are incomplete. More than 1500 human PCLS from 16 different donors were cultivated under standardized, serum-free conditions for up to 28 days and the viability, tissue integrity, and the transcriptome was assessed in great detail. Even though viability of PCLS was well preserved during long-term cultivation, a continuous loss of cells was observed. Although the bronchial epithelium was well preserved throughout cultivation, the alveolar integrity was preserved for about 2 weeks, and the vasculatory system experienced significant loss of integrity within the first week. Furthermore, ciliary beat in the small airways gradually decreased after 1 week. Interestingly, keratinizing squamous metaplasia of the alveolar epithelium with significantly increasing manifestation were found over time. Transcriptome analysis revealed a significantly increased immune response and significantly decreased metabolic activity within the first 24 hours after PCLS generation. Overall, this study provides a comprehensive overview of histomorphologic and pathologic changes during long-term cultivation of PCLS.


Assuntos
Pulmão/metabolismo , Adulto , Idoso , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fatores de Tempo
4.
Am J Physiol Heart Circ Physiol ; 323(6): H1352-H1364, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399384

RESUMO

Perturbed vitamin-A metabolism is associated with type 2 diabetes and mitochondrial dysfunction that are pathophysiologically linked to the development of diabetic cardiomyopathy (DCM). However, the mechanism, by which vitamin A might regulate mitochondrial energetics in DCM has previously not been explored. To test the hypothesis that vitamin-A deficiency accelerates the onset of cardiomyopathy in diet-induced obesity (DIO), we subjected mice with lecithin retinol acyltransferase (Lrat) germline deletion, which exhibit impaired vitamin-A stores, to vitamin A-deficient high-fat diet (HFD) feeding. Wild-type mice fed with a vitamin A-sufficient HFD served as controls. Cardiac structure, contractile function, and mitochondrial respiratory capacity were preserved despite vitamin-A deficiency following 20 wk of HFD feeding. Gene profiling by RNA sequencing revealed that vitamin A is required for the expression of genes involved in cardiac fatty acid oxidation, glycolysis, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation in DIO as expression of these genes was relatively preserved under vitamin A-sufficient HFD conditions. Together, these data identify a transcriptional program, by which vitamin A preserves cardiac energetic gene expression in DIO that might attenuate subsequent onset of mitochondrial and contractile dysfunction.NEW & NOTEWORTHY The relationship between vitamin-A status and the pathogenesis of diabetic cardiomyopathy has not been studied in detail. We assessed cardiac mitochondrial respiratory capacity, contractile function, and gene expression by RNA sequencing in a murine model of combined vitamin-A deficiency and diet-induced obesity. Our study identifies a role for vitamin A in preserving cardiac energetic gene expression that might attenuate subsequent development of mitochondrial and contractile dysfunction in diet-induced obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos , Animais , Vitamina A , Modelos Animais de Doenças , Dieta , Obesidade/genética , Expressão Gênica , Vitaminas
5.
Carcinogenesis ; 42(12): 1475-1484, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34487169

RESUMO

Tripartite motif (TRIM) family proteins are post-translational protein modifiers with E3-ubiquitin ligase activity, thereby involved in various biological processes. The molecular mechanisms driving prostate cancer (PCa) bone metastasis (BM) are incompletely understood, and targetable genetic alterations are lacking in the majority of cases. Therefore, we aimed to explore the expression and potential functional relevance of 71 TRIM members in bone metastatic PCa. We performed transcriptome analysis of all human TRIM family members and 770 cancer-related genes in 29 localized PCa and 30 PCa BM using Nanostring. KEGG, STRING and Ubibrowser were used for further bioinformatic gene correlation and pathway enrichment analyses. Compared to localized tumors, six TRIMs are under-expressed while nine TRIMs are over-expressed in BM. The differentially expressed TRIM proteins are linked to TNF-, TGFß-, PI3K/AKT- and HIF-1-signaling, and to features such as proteoglycans, platelet activation, adhesion and ECM-interaction based on correlation to cancer-related genes. The identification of TRIM-specific E3-ligase-substrates revealed insight into functional connections to oncogenes, tumor suppressors and cancer-related pathways including androgen receptor- and TGFß signaling, cell cycle regulation and splicing. In summary, this is the first study that comprehensively and systematically characterizes the expression of all TRIM members in PCa BM. Our results describe post-translational protein modification as an important regulatory mechanism of oncogenes, tumor suppressors, and pathway molecules in PCa progression. Therefore, this study may provide evidence for novel therapeutic targets, in particular for the treatment or prevention of BM.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas com Motivo Tripartido/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Anotação de Sequência Molecular , Família Multigênica , Transcriptoma
6.
Haematologica ; 106(5): 1354-1367, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327499

RESUMO

Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Interleucina-3 , Células-Tronco Pluripotentes , Adulto , Diferenciação Celular , Hematopoese , Humanos
7.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670003

RESUMO

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359-394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1-0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


Assuntos
Anticorpos Monoclonais/imunologia , Peptídeos/imunologia , alfa 1-Antitripsina/imunologia , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Armadilhas Extracelulares , Humanos , Lipopolissacarídeos/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Peptídeos/sangue , Peptídeos/química , Desnaturação Proteica
8.
Pathologe ; 42(2): 164-171, 2021 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-33560456

RESUMO

Viral respiratory diseases constitute the most common reasons for hospitalization with more than half of all acute illnesses worldwide. Progressive respiratory failure with pronounced diffuse alveolar damage has been identified as the primary cause of death in COVID-19. COVID-19 pneumonia shares common histopathological hallmarks with influenza (H1N1)-related ARDS, like diffuse alveolar damage (DAD) with edema, hemorrhage, and intra-alveolar fibrin deposition. The lungs with COVID-19 pneumonia revealed perivascular inflammation, an endothelial injury, microangiopathy, and an aberrant blood vessel neoformation by intussusceptive angiogenesis. While this pronounced angiocentric inflammation is likely be found - to varying degrees - in numerous other organs, e.g., the heart, COVID-19 is hypothesized to be not just a pulmonary, but rather a systemic "vascular disease."


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Coração , Humanos , Pulmão , SARS-CoV-2
9.
Blood ; 131(5): 533-545, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233822

RESUMO

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Infecções por Mycobacterium/prevenção & controle , Substâncias Protetoras , Receptores de Interferon/genética , Animais , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas/métodos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium avium , Substâncias Protetoras/metabolismo , Substâncias Protetoras/uso terapêutico , Células RAW 264.7 , Receptor de Interferon gama
10.
Thorax ; 74(10): 947-957, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076499

RESUMO

RATIONALE: Dendritic cells (DC) accumulate in the lungs of patients with idiopathic lung fibrosis, but their pathogenetic relevance is poorly defined. OBJECTIVES: To assess the role of the FMS-like tyrosine kinase-3 ligand (Flt3L)-lung dendritic cell axis in lung fibrosis. MEASUREMENTS AND MAIN RESULTS: We demonstrate in a model of adenoviral gene transfer of active TGF-ß1 that established lung fibrosis was accompanied by elevated serum Flt3L levels and subsequent accumulation of CD11bpos DC in the lungs of mice. Patients with idiopathic pulmonary fibrosis also demonstrated increased levels of Flt3L protein in serum and lung tissue and accumulation of lung DC in explant subpleural lung tissue specimen. Mice lacking Flt3L showed significantly reduced lung DC along with worsened lung fibrosis and reduced lung function relative to wild-type (WT) mice, which could be inhibited by administration of recombinant Flt3L. Moreover, therapeutic Flt3L increased numbers of CD11bpos DC and improved lung fibrosis in WT mice exposed to AdTGF-ß1. In this line, RNA-sequencing analysis of CD11bpos DC revealed significantly enriched differentially expressed genes within extracellular matrix degrading enzyme and matrix metalloprotease gene clusters. In contrast, the CD103pos DC subset did not appear to be involved in pulmonary fibrogenesis. CONCLUSIONS: We show that Flt3L protein and numbers of lung DC are upregulated in mice and humans during pulmonary fibrogenesis, and increased mobilisation of lung CD11bpos DC limits the severity of lung fibrosis in mice. The current study helps to inform the development of DC-based immunotherapy as a novel intervention against lung fibrosis in humans.


Assuntos
Colágeno/metabolismo , Células Dendríticas/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Ligantes , Pulmão/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Dev Biol ; 429(1): 186-199, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666954

RESUMO

In humans and mice, motile cilia occur on the surface of the embryonic ventral node, on respiratory and ependymal epithelia and in reproductive organs where they ensure normal left-right asymmetry of the organism, mucociliary clearance of airways, homeostasis of the cerebrospinal fluid and fertility. The genetic programme for the formation of motile cilia, thus critical for normal development and health, is switched on by the key transcription factor FOXJ1. In previous microarray screens for murine FOXJ1 effectors, we identified candidates for novel factors involved in motile ciliogenesis, including both genes that are well conserved throughout metazoa and beyond, like FOXJ1 itself, and genes without overt homologues outside higher vertebrates. Here we examine one of the novel murine FOXJ1 effectors, the uncharacterised 1700012B09Rik whose homologues appear to be restricted to higher vertebrates. In mouse embryos and adults, 1700012B09Rik is predominantly expressed in motile ciliated tissues in a FOXJ1-dependent manner. 1700012B09RIK protein localises to basal bodies of cilia in cultured cells. Detailed analysis of 1700012B09RiklacZ knock-out mice reveals no impaired function of motile cilia or non-motile cilia. In conclusion, this novel FOXJ1 effector is associated mainly with motile cilia but - in contrast to other known FOXJ1 targets - its putative ciliary function is not essential for development or health in the mouse, consistent with a late emergence during evolution of motile ciliogenesis.


Assuntos
Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Morfogênese , Alelos , Animais , Corpos Basais/metabolismo , Feminino , Genes Reporter , Homozigoto , Masculino , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Fenótipo , Transporte Proteico , Frações Subcelulares/metabolismo
14.
PLoS Pathog ; 12(5): e1005616, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27159323

RESUMO

Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo.


Assuntos
Modelos Animais de Doenças , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Animais Recém-Nascidos , Suscetibilidade a Doenças/microbiologia , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Fímbrias Bacterianas/ultraestrutura , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
17.
Am J Respir Cell Mol Biol ; 55(1): 105-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27082727

RESUMO

Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization.


Assuntos
Lisofosfolipídeos/metabolismo , Morfogênese , Alvéolos Pulmonares/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Animais , Contagem de Células , Movimento Celular , Tamanho Celular , Elasticidade , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores Teciduais de Metaloproteinases/metabolismo , Tropoelastina/metabolismo
18.
PLoS Pathog ; 10(9): e1004385, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210785

RESUMO

The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo.


Assuntos
Enterócitos/microbiologia , Células Epiteliais/microbiologia , Macrófagos/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Virulência/imunologia , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterócitos/imunologia , Enterócitos/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação Bacteriana da Expressão Gênica , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/imunologia , Salmonelose Animal/patologia
19.
Am J Pathol ; 185(12): 3178-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476349

RESUMO

Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-ß axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.


Assuntos
Biomarcadores/metabolismo , Bronquiolite Obliterante/diagnóstico , Transplante de Pulmão/efeitos adversos , Pulmão/metabolismo , Adulto , Biópsia/métodos , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/patologia , Contagem de Células , Diagnóstico Precoce , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Humanos , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA