Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 96(5): 1299-1305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38811718

RESUMO

BACKGROUND: Preterm infants are susceptible to oxidative stress and prone to respiratory diseases. Autophagy is an important defense mechanism against oxidative-stress-induced cell damage and involved in lung development and respiratory morbidity. We hypothesized that autophagy marker levels differ between preterm and term infants. METHODS: In the prospective Basel-Bern Infant Lung Development (BILD) birth cohort we compared cord blood levels of macroautophagy (Beclin-1, LC3B), selective autophagy (p62) and regulation of autophagy (SIRT1) in 64 preterm and 453 term infants. RESULTS: Beclin-1 and LC3B did not differ between preterm and term infants. However, p62 was higher (0.37, 95% confidence interval (CI) 0.05;0.69 in log2-transformed level, p = 0.025, padj = 0.050) and SIRT1 lower in preterm infants (-0.55, 95% CI -0.78;-0.31 in log2-transformed level, padj < 0.001). Furthermore, p62 decreased (padj-value for smoothing function was 0.018) and SIRT1 increased (0.10, 95% CI 0.07;0.13 in log2-transformed level, padj < 0.001) with increasing gestational age. CONCLUSION: Our findings suggest differential levels of key autophagy markers between preterm and term infants. This adds to the knowledge of the sparsely studied field of autophagy mechanisms in preterm infants and might be linked to impaired oxidative stress response, preterm birth, impaired lung development and higher susceptibility to respiratory morbidity in preterm infants. IMPACT: To the best of our knowledge, this is the first study to investigate autophagy marker levels between human preterm and term infants in a large population-based sample in cord blood plasma This study demonstrates differential levels of key autophagy markers in preterm compared to term infants and an association with gestational age This may be linked to impaired oxidative stress response or developmental aspects and provide bases for future studies investigating the association with respiratory morbidity.


Assuntos
Autofagia , Proteína Beclina-1 , Biomarcadores , Sangue Fetal , Recém-Nascido Prematuro , Proteínas Associadas aos Microtúbulos , Sirtuína 1 , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , Biomarcadores/sangue , Feminino , Estudos Prospectivos , Sirtuína 1/sangue , Masculino , Proteínas Associadas aos Microtúbulos/sangue , Proteína Beclina-1/sangue , Proteína Beclina-1/metabolismo , Sangue Fetal/metabolismo , Estresse Oxidativo , Idade Gestacional , Pulmão
3.
Front Pediatr ; 12: 1393291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910962

RESUMO

Background: Multiple-breath washout (MBW) is a sensitive method for assessing lung volumes and ventilation inhomogeneity in infants, but remains prone to artefacts (e.g., sighs). There is a lack of tools for systematic retrospective analysis of existing datasets, and unlike N2-MBW in older children, there are few specific quality control (QC) criteria for artefacts in infant SF6-MBW. Aim: We aimed to develop a computer-based tool for systematic evaluation of visual QC criteria of SF6-MBW measurements and to investigate interrater agreement and effects on MBW outcomes among three independent examiners. Methods: We developed a software package for visualization of raw Spiroware (Eco Medics AG, Switzerland) and signal processed WBreath (ndd Medizintechnik AG, Switzerland) SF6-MBW signal traces. Interrater agreement among three independent examiners (two experienced, one novice) who systematically reviewed 400 MBW trials for visual artefacts and the decision to accept/reject the washin and washout were assessed. Results: Our tool visualizes MBW signals and provides the user with (i) display options (e.g., zoom), (ii) options for a systematic QC assessment [e.g., decision to accept or reject, identification of artefacts (leak, sigh, irregular breathing pattern, breath hold), and comments], and (iii) additional information (e.g., automatic identification of sighs). Reviewer agreement was good using pre-defined QC criteria (κ 0.637-0.725). Differences in the decision to accept/reject had no substantial effect on MBW outcomes. Conclusion: Our visual quality control tool supports a systematic retrospective analysis of existing data sets. Based on predefined QC criteria, even inexperienced users can achieve comparable MBW results.

4.
Chemosphere ; 363: 142837, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009092

RESUMO

BACKGROUND: Current knowledge suggests that the gene region containing MUC5B and TOLLIP plays a role in airway defence and airway inflammation, and hence respiratory disease. It is also known that exposure to air pollution increases susceptibility to respiratory disease. We aimed to study whether the effect of air pollutants on the immune response and respiratory symptoms in infants may be modified by polymorphisms in MUC5B and TOLLIP genes. METHODS: 359 healthy term infants from the prospective Basel-Bern Infant Lung Development (BILD) birth cohort were included in the study. The main outcome was the score of weekly assessed respiratory symptoms in the first year of life. Using the candidate gene approach, we selected 10 single nucleotide polymorphisms (SNPs) from the MUC5B and TOLLIP regions. Nitrogen dioxide (NO2) and particulate matter ≤10 µm in aerodynamic diameter (PM10) exposure was estimated on a weekly basis. We used generalised additive mixed models adjusted for known covariates. To validate our results in vitro, cells from a lung epithelial cell line were downregulated in TOLLIP expression and exposed to diesel particulate matter (DPM) and polyinosinic-polycytidylic acid. RESULTS: Significant interaction was observed between modelled air pollution (weekly NO2 exposure) and 5 SNPs within MUC5B and TOLLIP genes regarding respiratory symptoms as outcome: E.g., infants carrying minor alleles of rs5744034, rs3793965 and rs3750920 (all TOLLIP) had an increased risk of respiratory symptoms with increasing NO2 exposure. In vitro experiments showed that cells downregulated for TOLLIP react differently to environmental pollutant exposure with DPM and viral stimulation. CONCLUSION: Our findings suggest that the effect of air pollution on respiratory symptoms in infancy may be influenced by the genotype of specific SNPs from the MUC5B and TOLLIP regions. For validation of the findings, we provided in vitro evidence for the interaction of TOLLIP with air pollution.


Assuntos
Poluentes Atmosféricos , Mucina-5B , Dióxido de Nitrogênio , Polimorfismo de Nucleotídeo Único , Humanos , Mucina-5B/genética , Poluentes Atmosféricos/toxicidade , Lactente , Masculino , Dióxido de Nitrogênio/toxicidade , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Estudos Prospectivos , Recém-Nascido , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/genética
5.
Pediatr Pulmonol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023392

RESUMO

INTRODUCTION: Major methodological issues with the existing algorithm (WBreath) used for the analysis of speed-of-sound-based infant sulfur hexafluoride (SF6) multiple-breath washout (MBW) measurements lead to implausible results and complicate the comparison between different age groups and centers. METHODS: We developed OASIS-a novel algorithm to analyze speed-of-sound-based infant SF6 MBW measurements. This algorithm uses known context of the measurements to replace the dependence of WBreath on model input parameters. We validated the functional residual capacity (FRC) measurement accuracy of this new algorithm in vitro, and investigated its use in existing infant MBW data sets from different infant cohorts from Switzerland and South Africa. RESULTS: In vitro, OASIS managed to outperform WBreath at FRC measurement accuracy, lowering mean (SD) absolute error from 5.1 (3.2) % to 2.1 (1.6) % across volumes relevant for the infant age range, in variable temperature, respiratory rate, tidal volume and ventilation inhomogeneity conditions. We showed that changes in the input parameters to WBreath had a major impact on MBW results, a methodological drawback which does not exist in the new algorithm. OASIS produced more plausible results than WBreath in longitudinal tracking of lung clearance index (LCI), provided improved measurement stability in LCI over time, and improved comparability between centers. DISCUSSION: This new algorithm represents a meaningful advance in obtaining results from a legacy system of lung function measurement by allowing a single method to analyze measurements from different age groups and centers.

6.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37650088

RESUMO

Background: The effects of prenatal antibiotic exposure on respiratory morbidity in infancy and the involved mechanisms are still poorly understood. We aimed to examine whether prenatal antibiotic exposure in the third trimester is associated with nasal microbiome and respiratory morbidity in infancy and at school age, and whether this association with respiratory morbidity is mediated by the nasal microbiome. Methods: We performed 16S ribosomal RNA gene sequencing (regions V3-V4) on nasal swabs obtained from 296 healthy term infants from the prospective Basel-Bern birth cohort (BILD) at age 4-6 weeks. Information about antibiotic exposure was derived from birth records and standardised interviews. Respiratory symptoms were assessed by weekly telephone interviews in the first year of life and a clinical visit at age 6 years. Structural equation modelling was used to test direct and indirect associations accounting for known risk factors. Results: α-Diversity indices were lower in infants with antibiotic exposure compared to nonexposed infants (e.g. Shannon index p-value 0.006). Prenatal antibiotic exposure was also associated with a higher risk of any, as well as severe, respiratory symptoms in the first year of life (risk ratio 1.38, 95% CI 1.03-1.84; adjusted p-value (padj)=0.032 and risk ratio 1.75, 95% CI 1.02-2.97; padj=0.041, respectively), but not with wheeze or atopy in childhood. However, we found no indirect mediating effect of nasal microbiome explaining these clinical symptoms. Conclusion: Prenatal antibiotic exposure was associated with lower diversity of nasal microbiome in infancy and, independently of microbiome, with respiratory morbidity in infancy, but not with symptoms later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA