Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(7): 4263-4271, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150261

RESUMO

The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).

2.
Nano Lett ; 18(4): 2343-2350, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29570304

RESUMO

The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core-shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering.

3.
Nano Lett ; 17(1): 136-142, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28001430

RESUMO

Nanoscale substrates such as nanowires allow heterostructure design to venture well beyond the narrow lattice mismatch range restricting planar heterostructures, owing to misfit strain relaxing at the free surfaces and partitioning throughout the entire nanostructure. In this work, we uncover a novel strain relaxation process in GaAs/InxGa1-xAs core-shell nanowires that is a direct result of the nanofaceted nature of these nanostructures. Above a critical lattice mismatch, plastically relaxed mounds form at the edges of the nanowire sidewall facets. The relaxed mounds and a coherent shell grow simultaneously from the beginning of the deposition with higher lattice mismatches increasingly favoring incoherent mound growth. This is in stark contrast to Stranski-Krastanov growth, where above a critical thickness coherent layer growth no longer occurs. This study highlights how understanding strain relaxation in lattice mismatched nanofaceted heterostructures is essential for designing devices based on these nanostructures.

4.
Nano Lett ; 17(7): 4255-4260, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28654278

RESUMO

Surface energies play a dominant role in the self-assembly of three-dimensional (3D) nanostructures. In this Letter, we show that using surfactants to modify surface energies can provide a means to externally control nanostructure self-assembly, enabling the synthesis of novel hierarchical nanostructures. We explore Bi as a surfactant in the growth of InAs on the {11̅0} sidewall facets of GaAs nanowires. The presence of surface Bi induces the formation of InAs 3D islands by a process resembling the Stranski-Krastanov mechanism, which does not occur in the absence of Bi on these surfaces. The InAs 3D islands nucleate at the corners of the {11̅0} facets above a critical shell thickness and then elongate along ⟨110⟩ directions in the plane of the nanowire sidewalls. Exploiting this growth mechanism, we realize a series of novel hierarchical nanostructures, ranging from InAs quantum dots on single {11̅0} nanowire facets to zigzag-shaped nanorings completely encircling nanowire cores. Photoluminescence spectroscopy and cathodoluminescence spectral line scans reveal that small surfactant-induced InAs 3D islands behave as optically active quantum dots. This work illustrates how surfactants can provide an unprecedented level of external control over nanostructure self-assembly.

5.
Nanotechnology ; 28(41): 415703, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28767046

RESUMO

Twin boundaries and boundaries between zincblende (ZB) and wurtzite (WZ) segments of GaAs-related nanowires (NWs) form intrinsic heterointerfaces with essential consequences for the application of such nanomaterials in optoelectronic devices. We show that for GaAs and GaAs/(Al, Ga)As core/shell NWs, crystal twinning along the NW axis can be imaged with a spatial resolution of 10 nm using secondary electrons in a scanning electron microscope (SEM). Changes of the crystal structure from the ZB to the WZ phase have been investigated by electron backscatter diffraction. In addition to these methods, we employ spectrally and spatially resolved cathodoluminescence measurements in the same SEM to study the correlation between the structural and optical properties in single NWs. Two GaAs/AlAs/GaAs core/shell/shell NWs differing significantly in the crystal structure along their axis have been investigated combining these three techniques in order to demonstrate the strength of the employed methodology. Our experiments show that based on commonly available SEM methods, an overview of the structural properties along an entire NW and their impact on the spectral and spatial luminescence distribution can be efficiently obtained providing a quick feedback for the optimization of growth conditions.

6.
Nanotechnology ; 27(9): 095601, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26822408

RESUMO

For the Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, growth temperature, As flux, and Ga flux have been systematically varied across the entire window of growth conditions that result in the formation of nanowires. A range of GaAs structures was observed, progressing from pure Ga droplets under negligible As flux through horizontal nanowires, tilted nanowires, vertical nanowires, and nanowires without droplets to crystallites as the As flux was increased. Quantitative analysis of the resulting sample morphology was performed in terms of nanowire number and volume density, number yield and volume yield of vertical nanowires, diameter, length, as well as the number and volume density of parasitic growth. The result is a growth map that comprehensively describes all nanowire and parasitic growth morphologies and hence enables growth of nanowire samples in a predictive manner. Further analysis indicates the combination of global Ga flux and growth temperature determines the total density of all objects, whereas the global As/Ga flux ratio independently determines the resultant sample morphology. Several dependencies observed here imply that all objects present on the substrate surface, i.e. both nanowires and parasitic structures, originate from Ga droplets.

7.
ACS Appl Mater Interfaces ; 13(42): 50220-50227, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643384

RESUMO

Core-shell nanowire heterostructures form the basis for many innovative devices. When compound nanowire shells are grown by directional deposition techniques, the azimuthal position of the sources for the different constituents in the growth reactor, substrate rotation, and nanowire self-shadowing inevitably lead to sequential deposition. Here, we uncover for In0.15Ga0.85As/GaAs shell quantum wells grown by molecular beam epitaxy a drastic impact of this sequentiality on the luminescence efficiency. The photoluminescence intensity of shell quantum wells grown with a flux sequence corresponding to migration enhanced epitaxy, that is, when As and the group-III metals essentially do not impinge at the same time, is more than 2 orders of magnitude higher than for shell quantum wells prepared with substantially overlapping fluxes. Transmission electron microscopy does not reveal any extended defects explaining this difference. Our analysis of photoluminescence transients shows that co-deposition has two detrimental microscopic effects. First, a higher density of electrically active point defects leads to internal electric fields reducing the electron-hole wave function overlap. Second, more point defects form that act as nonradiative recombination centers. Our study demonstrates that the source arrangement of the growth reactor, which is of mere technical relevance for planar structures, can have drastic consequences for the material properties of nanowire shells. We expect that this finding holds good also for other alloy nanowire shells.

8.
J Appl Crystallogr ; 50(Pt 3): 673-680, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28656032

RESUMO

Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In0.15Ga0.85As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA