Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hear Res ; 426: 108633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36288662

RESUMO

CHARGE syndrome is a multiple anomaly developmental disorder characterized by a variety of sensory deficits, including sensorineural hearing loss of unknown etiology. Most cases of CHARGE are caused by heterozygous pathogenic variants in CHD7, the gene encoding Chromodomain DNA-binding Protein 7 (CHD7), a chromatin remodeler important for the development of neurons and glial cells. Previous studies in the Chd7Gt/+ mouse model of CHARGE syndrome showed substantial neuron loss in the early stages of the developing inner ear that are compensated for by mid-gestation. In this study, we sought to determine if early developmental delays caused by Chd7 haploinsufficiency affect neurons, glial cells, and inner hair cell innervation in the mature cochlea. Analysis of auditory brainstem response recordings in Chd7Gt/+ adult animals showed elevated thresholds at 4 kHz and 16 kHz, but no differences in ABR Wave I peak latency or amplitude compared to wild type controls. Proportions of neurons in the Chd7Gt/+ adult spiral ganglion and densities of nerve projections from the spiral ganglion to the organ of Corti were not significantly different from wild type controls. Inner hair cell synapse formation also appeared unaffected in mature Chd7Gt/+ cochleae. However, histological analysis of adult Chd7Gt/+ cochleae revealed diminished satellite glial cells and hypermyelinated Type I spiral ganglion axons. We characterized the expression of CHD7 in developing inner ear glia and found CHD7 to be expressed during a tight window of inner ear development at the Schwann cell precursor stage at E9.5. While cochlear neurons appear to differentiate normally in the setting of Chd7 haploinsufficiency, our results suggest an important role for CHD7 in glial cells in the inner ear. This study highlights the dynamic nature of CHD7 activity during inner ear development in mice and contributes to understanding CHARGE syndrome pathology.


Assuntos
Síndrome CHARGE , Orelha Interna , Camundongos , Animais , Gânglio Espiral da Cóclea/patologia , Síndrome CHARGE/genética , Síndrome CHARGE/patologia , Cromatina , Orelha Interna/patologia , Neuroglia , Proteínas de Ligação a DNA/genética
2.
Hear Res ; 424: 108601, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126618

RESUMO

Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL). The present study further investigated this condition in the UMHET4 mouse model by comparing a small arms fire (SAF)-like impulse noise exposure that has the greatest immediate effect in more apical cochlear regions to a broadband noise (BBN) exposure that has the greatest immediate effect in more basal cochlear regions. Both noise exposures were given at levels that only induced temporary auditory brainstem response (ABR) threshold shifts (TS). Mice were noise exposed at 5 months of age followed by ABR assessment at 6, 12, 18, 21, and 24 months of age. Mice that received the SAF-like impulse noise had accelerated age-related TS at 4 kHz that appeared at 12 months of age (significantly increased compared to no-noise controls). This increased TS at 4 kHz continued at 18 and 21 months but was no longer significantly greater at 24 months of age. The SAF-like impulse noise also induced a significantly greater mean TS at 48 kHz, first appearing at 18 months of age and continuing to be significantly greater than controls at 21 and 24 months. The BBN induced a different pace and pattern of enhanced age-related ABR TS. The mean TS for the BBN group first became significantly greater than controls at 18 months of age and only at 48 kHz. It remained significantly greater than controls at 21 months but was no longer significantly greater at 24 months of age. Results, therefore, show different influences on ARHL for the two different noise exposure conditions. Noise-induced enhancement appears to provide more an acceleration than overall total increase in ARHL.


Assuntos
Perda Auditiva Provocada por Ruído , Presbiacusia , Animais , Limiar Auditivo/fisiologia , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/genética , Camundongos , Ruído/efeitos adversos , Presbiacusia/genética
3.
Front Cell Neurosci ; 15: 658972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897373

RESUMO

Our previous study demonstrated rapamycin added to diet at 4 months of age had significantly less age-related outer hair cell loss in the basal half of the cochlea at 22 months of age compared to mice without rapamycin. The present study tested adding rapamycin to diet later in life, at 14 months of age, and added a longitudinal assessment of auditory brain stem response (ABR). The present study used UMHET4 mice, a 4 way cross in which all grandparental strains lack the Cdh23753A allele that predisposes to early onset, progressive hearing loss. UMHET4 mice typically have normal hearing until 16-17 months, then exhibit threshold shifts at low frequencies/apical cochlea and later in more basal high frequency regions. ABR thresholds at 4, 12, 24, and 48 kHz were assessed at 12, 18, and 24 months of age and compared to baseline ABR thresholds acquired at 5 months of age to determine threshold shifts (TS). There was no TS at 12 months of age at any frequency tested. At 18 months of age mice with rapamycin added to diet at 14 months had a significantly lower mean TS at 4 and 12 kHz compared to mice on control diet with no significant difference at 24 and 48 kHz. At 24 months of age, the mean 4 kHz TS in rapamycin diet group was no longer significantly lower than the control diet group, while the 12 kHz mean remained significantly lower. Mean TS at 24 and 48 kHz in the rapamycin diet group became significantly lower than in the control diet group at 24 months. Hair cell counts at 24 months showed large loss in the apical half of most rapamycin and control diet mice cochleae with no significant difference between groups. There was only mild outer hair cell loss in the basal half of rapamycin and control diet mice cochleae with no significant difference between groups. The results show that a later life addition of rapamycin can decrease age-related hearing loss in the mouse model, however, it also suggests that this decrease is a delay/deceleration rather than a complete prevention.

4.
J Audiol Otol ; 23(2): 69-75, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30727719

RESUMO

BACKGROUND AND OBJECTIVES: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-ß-cyclodextrin (HPßCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPßCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPßCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPßCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPßCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPßCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPßCD. MATERIALS AND METHODS: Ebselen was applied prior to administration of HPßCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. RESULTS: HPßCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPßCD-induced hearing loss or alter the resulting histopathology. CONCLUSIONS: The results indirectly suggest that cochlear damage by HPßCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPßCD otopathology is necessary.

5.
Hear Res ; 225(1-2): 71-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17275231

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is a member of the TGF-beta superfamily and is known to be important for the normal development of many tissues and organs, including the inner ear. Bmp4 homozygous null mice die as embryos, but Bmp4 heterozygous null (Bmp4(+/-)) mice are viable and some adults exhibit a circling phenotype, suggestive of an inner ear defect. To understand the role of BMP4 in inner ear development and function, we have begun to study C57BL/6 Bmp4(+/-) mice. Quantitative testing of the vestibulo-collic reflex, which helps maintain head stability, demonstrated that Bmp4(+/-) mice that exhibit circling behavior have a poor response in the yaw axis, consistent with semicircular canal dysfunction. Although the hair cells of the ampullae were grossly normal, the stereocilia were greatly reduced in number. Auditory brainstem responses showed that Bmp4(+/-) mice have elevated hearing thresholds and immunohistochemical staining demonstrated decreased numbers of neuronal processes in the organ of Corti. Thus Bmp4(+/-) mice have structural and functional deficits in the inner ear.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Orelha Interna/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Comportamento Animal , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/genética , Cóclea/patologia , Orelha Interna/patologia , Orelha Interna/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Expressão Gênica , Células Ciliadas Auditivas/patologia , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fenótipo , Reflexo/fisiologia , Canais Semicirculares/fisiopatologia
6.
Neuroscience ; 332: 242-57, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27403879

RESUMO

In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.


Assuntos
Vias Auditivas/patologia , Cóclea/patologia , Núcleo Coclear/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Ruído/efeitos adversos , Animais , Vias Auditivas/metabolismo , Tamanho Celular , Sobrevivência Celular , Cóclea/metabolismo , Núcleo Coclear/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Receptores de AMPA/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
7.
Mol Ther Methods Clin Dev ; 2: 15019, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029729

RESUMO

The most common reason for sensorineural deafness is death of hair cells (HCs). Heat shock proteins (HSPs) are molecular chaperones that participate in folding, targeting, and degrading proteins. HSP expression is increased in response to various environmental stresses to protect cells from damage. Here, we tested whether viral-mediated overexpression of HSP70 can protect HCs and hearing from severe ototoxicity (kanamycin and furosemide) in guinea pigs. Adenovirus-HSP70 mCherry (Ad.HSP70-mCherry) was injected to experimental animals and adenovirus-mCherry to controls, 4 days before the ototoxic insult. Hearing thresholds were measured by auditory brainstem response before the insult and again before sacrificing the animals, 14 days after the insult. Epi-fluorescence immunocytochemistry showed that injection of Ad.HSP70-mCherry resulted in mCherry fluorescence in nonsensory cells of the organ of Corti. The ototoxic insult eliminated both outer HCs and inner HCs throughout most of the cochlea of control (adenovirus-mCherry-injected) ears and contralateral (uninjected) ears. Ad.HSP70-mCherry-injected ears exhibited a significant preservation of inner HCs compared to control and contralateral ears, but outer HCs were not protected. Auditory brainstem response thresholds were significantly better in Ad.HSP70-mCherry-injected ears than in control and contralateral ears. Our data show that HSP70 augmentation may represent a potential therapy attenuating ototoxic inner HC loss.

8.
J Assoc Res Otolaryngol ; 16(6): 695-712, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26463873

RESUMO

SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3­10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB). Slc44a2(Δ/Δ) mice produced abnormally spliced Slc44a2 transcripts that contain a frame shift and premature stop codons. Neither full-length SLC44A2 nor a putative truncated protein could be detected in Slc44a2(Δ/Δ) mice, suggesting a likely null allele. Auditory brain stem responses (ABRs) of mice carrying the Slc44a2Δ allele on an FVB/NJ genetic background were tested longitudinally between the ages of 2 and 10 months. By 6 months of age,Slc44a2(Δ/Δ) mice exhibited hearing loss at 32 kHz,but at 12 and 24 kHz had sound thresholds similar to those of wild-type Slc44a2(+/+) and heterozygous +/Slc44a2Δ mice. After 6 months of age, Slc44a2(Δ/Δ) mutants exhibited progressive hearing loss at all frequencies and +/Slc44a2(Δ) mice exhibited moderate threshold elevations at high frequency. Histologic evaluation of Slc44a2(Δ/Δ) mice revealed extensive hair cell and spiral ganglion cell loss, especially in the basal turn of the cochlea. We conclude that Slc44a2 function is required for long-term hair cell survival and maintenance of hearing.


Assuntos
Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Gânglio Espiral da Cóclea/patologia , Sequência de Aminoácidos , Animais , Feminino , Deleção de Genes , Perda Auditiva Neurossensorial/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular
9.
PLoS One ; 7(12): e53280, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285273

RESUMO

Cyclodextrins are sugar compounds that are increasingly finding medicinal uses due to their ability to complex with hydrophobic molecules. One cyclodextrin in particular, 2-hydroxypropyl-ß-cyclodextrin (HPßCD), is used as a carrier to solubilize lipophilic drugs and is itself being considered as a therapeutic agent for treatment of Niemann-Pick Type C disease, due to its ability to mobilize cholesterol. Results from toxicological studies suggest that HPßCD is generally safe, but a recent study has found that it causes hearing loss in cats. Whether the hearing loss occurred via death of cochlear hair cells, rendering it permanent, was unexplored. In the present study, we examined peripheral auditory function and cochlear histology in mice after subcutaneous injection of HPßCD to test for hearing loss and correlate any observed auditory deficits with histological findings. On average, auditory brainstem response thresholds were elevated at 4, 16, and 32 kHz in mice one week after treatment with 8,000 mg/kg. In severely affected mice all outer hair cells were missing in the basal half of the cochlea. In many cases, surviving hair cells in the cochlear apex exhibited abnormal punctate distribution of the motor protein prestin, suggesting long term changes to membrane composition and integrity. Mice given a lower dose of 4,000 mg/kg exhibited hearing loss only after repeated doses, but these threshold shifts were temporary. Therefore, cyclodextrin-induced hearing loss was complex, involving cell death and other more subtle influences on cochlear physiology.


Assuntos
Anticolesterolemiantes/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , beta-Ciclodextrinas/efeitos adversos , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/farmacologia , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/patologia , Infusões Parenterais , Camundongos , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/farmacologia
10.
Mol Cell Neurosci ; 37(1): 153-69, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17977745

RESUMO

The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) and optic nerve development. Using Math5-lacZ knockout mice, we have identified an additional expression domain for Math5 outside the eye, in functionally connected structures of the central auditory system. In the adult hindbrain, the cytoplasmic Math5-lacZ reporter is expressed within the ventral cochlear nucleus (VCN), in a subpopulation of neurons that project to medial nucleus of the trapezoid body (MNTB), lateral superior olive (LSO), and lateral lemniscus (LL). These cells were identified as globular and small spherical bushy cells based on their morphology, abundance, distribution within the cochlear nucleus (CN), co-expression of Kv1.1, Kv3.1b and Kcnq4 potassium channels, and projection patterns within the auditory brainstem. Math5-lacZ is also expressed by cochlear root neurons in the auditory nerve. During embryonic development, Math5-lacZ was detected in precursor cells emerging from the caudal rhombic lip from embryonic day (E)12 onwards, consistent with the time course of CN neurogenesis. These cells co-express MafB and are post-mitotic. Math5 expression in the CN was verified by mRNA in situ hybridization, and the identity of positive neurons was confirmed morphologically using a Math5-Cre BAC transgene with an alkaline phosphatase reporter. The hindbrains of Math5 mutants appear grossly normal, with the exception of the CN. Although overall CN dimensions are unchanged, the lacZ-positive cells are significantly smaller in Math5 -/- mice compared to Math5 +/- mice, suggesting these neurons may function abnormally. The auditory brainstem response (ABR) of Math5 mutants was evaluated in a BALB/cJ congenic background. ABR thresholds of Math5 -/- mice were similar to those of wild-type and heterozygous mice, but the interpeak latencies for Peaks II-IV were significantly altered. These temporal changes are consistent with a higher-level auditory processing disorder involving the CN, potentially affecting the integration of binaural sensory information.


Assuntos
Vias Auditivas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Vias Auditivas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bromodesoxiuridina/metabolismo , Núcleo Coclear/anatomia & histologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Estilbamidinas/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA