Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466300

RESUMO

Reusing the tactile knowledge of some previously-explored objects (prior objects) helps us to easily recognize the tactual properties of new objects. In this paper, we enable a robotic arm equipped with multi-modal artificial skin, like humans, to actively transfer the prior tactile exploratory action experiences when it learns the detailed physical properties of new objects. These experiences, or prior tactile knowledge, are built by the feature observations that the robot perceives from multiple sensory modalities, when it applies the pressing, sliding, and static contact movements on objects with different action parameters. We call our method Active Prior Tactile Knowledge Transfer (APTKT), and systematically evaluated its performance by several experiments. Results show that the robot improved the discrimination accuracy by around 10 % when it used only one training sample with the feature observations of prior objects. By further incorporating the predictions from the observation models of prior objects as auxiliary features, our method improved the discrimination accuracy by over 20 % . The results also show that the proposed method is robust against transferring irrelevant prior tactile knowledge (negative knowledge transfer).

2.
Sci Robot ; 7(67): eabl8419, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767646

RESUMO

Neuromorphic hardware enables fast and power-efficient neural network-based artificial intelligence that is well suited to solving robotic tasks. Neuromorphic algorithms can be further developed following neural computing principles and neural network architectures inspired by biological neural systems. In this Viewpoint, we provide an overview of recent insights from neuroscience that could enhance signal processing in artificial neural networks on chip and unlock innovative applications in robotics and autonomous intelligent systems. These insights uncover computing principles, primitives, and algorithms on different levels of abstraction and call for more research into the basis of neural computation and neuronally inspired computing hardware.


Assuntos
Inteligência Artificial , Robótica , Algoritmos , Computadores , Redes Neurais de Computação
3.
Sci Robot ; 7(67): eabl7344, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675450

RESUMO

Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrônica , Humanos , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA