Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732511

RESUMO

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Assuntos
Colina , Suplementos Nutricionais , Etanol , Fígado , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Colina/administração & dosagem , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/etiologia , Triglicerídeos/metabolismo , PPAR alfa/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Intolerância à Glucose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276566

RESUMO

Lutein and its isomer zeaxanthin serve as antioxidants and preserve cognitive function during aging. However, whether lutein/zeaxanthin (L + Z) exposure early in life improves cognitive development of children is rarely explored. It is also unknown whether gestational diabetes mellitus (GDM), characterized by heightened oxidative stress, affects lutein metabolism. This prospective longitudinal cohort study examined the differences in L + Z intake and metabolism, as well as the association between maternal L + Z intake and children's cognitive development in GDM versus non-GDM pregnancies. Seventy-six pregnant women (n = 40 with GDM) were recruited between 25 and 33 weeks of gestation and dietary intakes were recorded. At delivery, cord blood was collected, and 2 years later, the Bayley III developmental test was conducted on a subset of children (n = 38). The results suggest that GDM reduced cord blood lutein levels at birth; L + Z intake during pregnancy was associated with better cognitive (ß = 0.003, p = 0.001) and language (ß = 0.002, p = 0.038) scoring of children at 2 years regardless of GDM status. In conclusion, maternal L + Z intake was positively associated with children's developmental scores, regardless of GDM. More studies are needed to confirm such associations.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Recém-Nascido , Gravidez , Cognição , Estudos Longitudinais , Luteína , Estudos Prospectivos , Zeaxantinas , Pré-Escolar
3.
Clin Nutr ; 43(6): 1216-1223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636347

RESUMO

BACKGROUND & AIMS: Both maternal metabolic dysregulation, e.g., gestational diabetes mellitus (GDM), and maternal supply of nutrients that participate in one-carbon (1C) metabolism, e.g., folate, choline, betaine, and vitamin B12, have been demonstrated to influence epigenetic modification such as DNA methylation, thereby exerting long-lasting impacts on growth and development of offspring. This study aimed to determine how maternal 1C nutrient intake was associated with DNA methylation and further, development of children, as well as whether maternal GDM status modified the association in a prospective cohort. METHODS: In this study, women with (n = 18) and without (n = 20) GDM were recruited at 25-33 weeks gestation. Detailed dietary intake data was collected by 3-day 24-h dietary recall and nutrient levels in maternal blood were also assessed at enrollment. The maternal-child dyads were invited to participate in a 2-year follow-up during which anthropometric measurement and the Bayley Scales of Infant and Toddler Development™ Screening Test (Third Edition) were conducted on children. The association between maternal 1C nutrients and children's developmental outcomes was analyzed with a generalized linear model controlling for maternal GDM status. RESULTS: We found that children born to mothers with GDM had lower scores in the language domain of the Bayley test (p = 0.049). Higher maternal food folate and choline intakes were associated with better language scores in children (p = 0.01 and 0.025, respectively). Higher maternal food folate intakes were also associated with better cognitive scores in children (p = 0.002). Higher 1C nutrient intakes during pregnancy were associated with lower body weight of children at 2 years of age (p < 0.05). However, global DNA methylation of children's buccal cells was not associated with any maternal 1C nutrients. CONCLUSIONS: In conclusion, higher 1C nutrient intake during pregnancy was associated with lower body weight and better neurodevelopmental outcomes of children. This may help overcome the lower language scores seen in GDM-affected children in this cohort. Studies in larger cohorts and with a longer follow-up duration are needed to further delineate the relationship between prenatal 1C nutrient exposure, especially in GDM-affected pregnancies, and offspring health outcomes.


Assuntos
Desenvolvimento Infantil , Diabetes Gestacional , Humanos , Feminino , Gravidez , Estudos Prospectivos , Desenvolvimento Infantil/fisiologia , Seguimentos , Adulto , Pré-Escolar , Metilação de DNA , Colina/administração & dosagem , Colina/sangue , Efeitos Tardios da Exposição Pré-Natal , Masculino , Ácido Fólico/sangue , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Dieta/estatística & dados numéricos , Dieta/métodos , Lactente , Vitamina B 12/sangue , Vitamina B 12/administração & dosagem , Betaína/administração & dosagem , Betaína/sangue
4.
Nutrients ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839327

RESUMO

Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Masculino , Camundongos , Animais , Obesidade/metabolismo , Plasmalogênios , Colina/metabolismo , Obesidade Materna/metabolismo , Lipidômica , Dieta Hiperlipídica , Fígado/metabolismo , Suplementos Nutricionais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vitaminas/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Clin Epigenetics ; 15(1): 137, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633918

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM), characterized by hyperglycemia that develops during pregnancy, increases the risk of fetal macrosomia, childhood obesity and cardiometabolic disorders later in life. This process has been attributed partly to DNA methylation modifications in growth and stress-related pathways. Nutrients involved with one-carbon metabolism (OCM), such as folate, choline, betaine, and vitamin B12, provide methyl groups for DNA methylation of these pathways. Therefore, this study aimed to determine whether maternal OCM nutrient intakes and levels modified fetal DNA methylation and in turn altered fetal growth patterns in pregnancies with and without GDM. RESULTS: In this prospective study at a single academic institution from September 2016 to June 2019, we recruited 76 pregnant women with and without GDM at 25-33 weeks gestational age and assessed their OCM nutrient intake by diet recalls and measured maternal blood OCM nutrient levels. We also collected placenta and cord blood samples at delivery to examine fetal tissue DNA methylation of the genes that modify fetal growth and stress response such as insulin-like growth factor 2 (IGF2) and corticotropin-releasing hormone (CRH). We analyzed the association between maternal OCM nutrients and fetal DNA methylation using a generalized linear mixed model. Our results demonstrated that maternal choline intake was positively correlated with cord blood CRH methylation levels in both GDM and non-GDM pregnancies (r = 0.13, p = 0.007). Further, the downstream stress hormone cortisol regulated by CRH was inversely associated with maternal choline intake (r = - 0.36, p = 0.021). Higher maternal betaine intake and serum folate levels were associated with lower cord blood and placental IGF2 DNA methylation (r = - 0.13, p = 0.049 and r = - 0.065, p = 0.034, respectively) in both GDM and non-GDM pregnancies. Further, there was an inverse association between maternal betaine intake and birthweight of infants (r = - 0.28, p = 0.015). CONCLUSIONS: In conclusion, we observed a complex interrelationship between maternal OCM nutrients and fetal DNA methylation levels regardless of GDM status, which may, epigenetically, program molecular pathways related to fetal growth and stress response.


Assuntos
Metilação de DNA , Diabetes Gestacional , Humanos , Feminino , Diabetes Gestacional/genética , Gravidez , Feto , Ácido Fólico/sangue , Regiões Promotoras Genéticas , Estudos Prospectivos
6.
Nutrients ; 13(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684556

RESUMO

Diet quality scores are designed mainly based on Western-style dietary patterns. They were demonstrated to be good indicators of obesity in developed but not developing countries. Several diet quality scores were developed based on the Chinese dietary guidelines, yet no systematic review exists regarding how they were related to obesity. We searched research articles published between 2000 and 2021 in PubMed, CINAHL, and Scopus databases. Both cross-sectional and prospective studies that examined the relationship between a diet quality score and weight, body mass index, obesity, or waist circumference conducted in a Chinese population were selected. From the 602 articles searched, 20 articles were selected (12 are cross-sectional studies and 8 are prospective cohort studies). The relationship between internationally used scores and obesity was inconsistent among studies. Scores tailored to the Chinese diet demonstrated a strong relationship with both being underweight and obesity. The heterogeneity of the populations and the major nutrition transition in China may partially explain the discrepancies among studies. In conclusion, diet quality scores tailored to the Chinese diet may be associated with both undernutrition and overnutrition, as well as being underweight and obesity outcomes.


Assuntos
Povo Asiático/estatística & dados numéricos , Dieta Saudável/estatística & dados numéricos , Obesidade/epidemiologia , Adulto , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA