Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 68: 305-331, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301760

RESUMO

Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

2.
ACS Appl Mater Interfaces ; 10(32): 26825-26829, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063133

RESUMO

Cocatalysis is a promising approach toward enhanced electrocatalytic activity. We report such synergic catalysis involving organic xanthylium-based catalyst, Xan2+, and oxides formed on the electrode surface. The oxygen evolution reaction (OER) was observed on some working electrodes (gold, platinum, glassy carbon, boron-doped diamond), while others (titanium and fluorine-doped tin oxide) exhibited no OER activity. On the basis of experimental data and supported by calculations, we propose a mechanism in which oxidized Xan2+ activates electrode toward the rate-determining O-O bond formation. In light of our findings, efficient OER electrocatalysis can be achieved using materials that strongly bind oxygen species and electron-deficient organic cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA