Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 51(22): 12069-12075, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953306

RESUMO

The branch point sequence is a degenerate intronic heptamer required for the assembly of the spliceosome during pre-mRNA splicing. Disruption of this motif may promote alternative splicing and eventually cause phenotype variation. Despite its functional relevance, the branch point sequence is not included in most genome annotations. Here, we predict branch point sequences in 30 plant and animal species and attempt to quantify their evolutionary constraints using public variant databases. We find an implausible variant distribution in the databases from 16 of 30 examined species. Comparative analysis of variants from whole-genome sequencing shows that variants submitted from exome sequencing or false positive variants are widespread in public databases and cause these irregularities. We then investigate evolutionary constraint with largely unbiased public variant databases in 14 species and find that the fourth and sixth position of the branch point sequence are more constrained than coding nucleotides. Our findings show that public variant databases should be scrutinized for possible biases before they qualify to analyze evolutionary constraint.


Assuntos
Evolução Biológica , Plantas , Splicing de RNA , Animais , Genômica , Íntrons/genética , Plantas/genética , Spliceossomos , Bases de Dados Genéticas
2.
PLoS Genet ; 16(5): e1008804, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407316

RESUMO

Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10-27), head (P = 2.0 x 10-44) and tail anomalies (P = 7.2 x 10-49) and insemination success (P = 9.9 x 10-13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10-32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle.


Assuntos
Processamento Alternativo , Proteínas do Citoesqueleto/genética , Infertilidade Masculina/genética , Polimorfismo de Nucleotídeo Único , Sêmen/fisiologia , Animais , Bovinos , Cromossomos de Mamíferos/genética , Estudo de Associação Genômica Ampla , Inseminação Artificial/veterinária , Masculino , Característica Quantitativa Herdável , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Sequenciamento Completo do Genoma
3.
BMC Genomics ; 23(1): 130, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164677

RESUMO

BACKGROUND: Accurate haplotype reconstruction is required in many applications in quantitative and population genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-based phasing methods. This data represents a typical example of a livestock population, with low effective population size, high levels of relatedness and long-range linkage disequilibrium. RESULTS: After stringent filtering of our sequence data, we evaluated several population-based phasing programs including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individuals having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation rules were considered the gold standard to assess the performance of population-based methods in two scenarios. In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and the probability that there is no phasing error between a pair of SNPs as a function of their distance. For most evaluated metrics or scenarios, the best software was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb (scenario 2). These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds to only one switch error every 40,000 phased informative markers. When more relatives were included in the data (scenario 2), FImpute3.0 reconstructed extremely long segments without errors. CONCLUSIONS: We report extremely high phasing accuracies in a typical livestock sample. ShapeIT4.1 and Beagle5.2 proved to be the most accurate, particularly for phasing long segments and in the first scenario. Nevertheless, most tools achieved high accuracy at short distances and would be suitable for applications requiring only local haplotypes.


Assuntos
Benchmarking , Genoma , Algoritmos , Animais , Bovinos/genética , Haplótipos , Linhagem , Polimorfismo de Nucleotídeo Único , Software
4.
Genet Sel Evol ; 54(1): 18, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255804

RESUMO

BACKGROUND: Semen quality and insemination success are monitored in artificial insemination bulls to ensure high male fertility rates. Only ejaculates that fulfill minimum quality requirements are processed and eventually used for artificial inseminations. We examined 70,990 ejaculates from 1343 Brown Swiss bulls to identify bulls from which all ejaculates were rejected due to low semen quality. This procedure identified a bull that produced 12 ejaculates with an aberrantly small number of sperm (0.2 ± 0.2 × 109 sperm per mL) which were mostly immotile due to multiple morphological abnormalities. RESULTS: The genome of this bull was sequenced at a 12× coverage to investigate a possible genetic cause. Comparing the sequence variant genotypes of this bull with those from 397 fertile bulls revealed a 1-bp deletion in the coding sequence of the QRICH2 gene which encodes the glutamine rich 2 protein, as a compelling candidate causal variant. This 1-bp deletion causes a frameshift in translation and a premature termination codon (ENSBTAP00000018337.1:p.Cys1644AlafsTer52). The analysis of testis transcriptomes from 76 bulls showed that the transcript with the premature termination codon is subject to nonsense-mediated mRNA decay. The 1-bp deletion resides in a 675-kb haplotype that includes 181 single nucleotide polymorphisms (SNPs) from the Illumina BovineHD Bead chip. This haplotype segregates at a frequency of 5% in the Brown Swiss cattle population. Our analysis also identified another bull that carried the 1-bp deletion in the homozygous state. Semen analyses from the second bull confirmed low sperm concentration and immotile sperm with multiple morphological abnormalities that primarily affect the sperm flagellum and, to a lesser extent, the sperm head. CONCLUSIONS: A recessive loss-of-function allele of the bovine QRICH2 gene likely causes low sperm concentration and immotile sperm with multiple morphological abnormalities. Routine sperm analyses unambiguously identify homozygous bulls for this allele. A direct gene test can be implemented to monitor the frequency of the undesired allele in cattle populations.


Assuntos
Oligospermia , Análise do Sêmen , Animais , Bovinos/genética , Fertilidade/genética , Inseminação Artificial/veterinária , Masculino , Análise do Sêmen/veterinária , Espermatozoides
5.
BMC Genomics ; 22(1): 363, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011274

RESUMO

BACKGROUND: Reference-guided read alignment and variant genotyping are prone to reference allele bias, particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly continuous Angus-based assembly (UOA_Angus_1). RESULTS: Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance between sequence- and array-called genotypes was high and the number of variants deviating from Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step imputation approach. The accuracy of imputation (Beagle R2) was very high (0.87) for both assemblies. Genome-wide association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced almost identical results from both assemblies. CONCLUSIONS: The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused to compare the impact of reference genomes on genome analyses in various breeds, populations and species.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Animais , Bovinos/genética , Cães , Genômica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
BMC Genomics ; 22(1): 290, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882824

RESUMO

BACKGROUND: The key-ancestor approach has been frequently applied to prioritize individuals for whole-genome sequencing based on their marginal genetic contribution to current populations. Using this approach, we selected 70 key ancestors from two lines of the Swiss Large White breed that have been selected divergently for fertility and fattening traits and sequenced their genomes with short paired-end reads. RESULTS: Using pedigree records, we estimated the effective population size of the dam and sire line to 72 and 44, respectively. In order to assess sequence variation in both lines, we sequenced the genomes of 70 boars at an average coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the genetic diversity of the breeding populations of the dam and sire line, respectively. Reference-guided variant discovery using the GATK revealed 26,862,369 polymorphic sites. Principal component, admixture and fixation index (FST) analyses indicated considerable genetic differentiation between the lines. Genomic inbreeding quantified using runs of homozygosity was higher in the sire than dam line (0.28 vs 0.26). Using two complementary approaches, we detected 51 signatures of selection. However, only six signatures of selection overlapped between both lines. We used the sequenced haplotypes of the 70 key ancestors as a reference panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at very low coverage (1.11-fold) using the GLIMPSE software. The genotype concordance, non-reference sensitivity and non-reference discrepancy between thus inferred and Illumina PorcineSNP60 BeadChip-called genotypes was 97.60, 98.73 and 3.24%, respectively. The low-pass sequencing-derived genomic relationship coefficients were highly correlated (r > 0.99) with those obtained from microarray genotyping. CONCLUSIONS: We assessed genetic diversity within and between two lines of the Swiss Large White pig breed. Our analyses revealed considerable differentiation, even though the split into two populations occurred only few generations ago. The sequenced haplotypes of the key ancestor animals enabled us to implement genotyping by low-pass sequencing which offers an intriguing cost-effective approach to increase the variant density over current array-based genotyping by more than 350-fold.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Genótipo , Haplótipos , Masculino , Suínos/genética , Suíça
7.
BMC Genomics ; 22(1): 225, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784962

RESUMO

BACKGROUND: Cattle are ideally suited to investigate the genetics of male fertility. Semen from individual bulls is used for thousands of artificial inseminations for which the fertilization success is monitored. Results from the breeding soundness examination and repeated observations of semen quality complement the fertility evaluation for each bull. RESULTS: In a cohort of 3881 Brown Swiss bulls that had genotypes at 683,609 SNPs, we reveal four novel recessive QTL for male fertility on BTA1, 18, 25, and 26 using haplotype-based association testing. A QTL for bull fertility on BTA1 is also associated with sperm head shape anomalies. All other QTL are not associated with any of the semen quality traits investigated. We perform complementary fine-mapping approaches using publicly available transcriptomes as well as whole-genome sequencing data of 125 Brown Swiss bulls to reveal candidate causal variants. We show that missense or nonsense variants in SPATA16, VWA3A, ENSBTAG00000006717 and ENSBTAG00000019919 are in linkage disequilibrium with the QTL. Using whole-genome sequence data, we detect strong association (P = 4.83 × 10- 12) of a missense variant (p.Ile193Met) in SPATA16 with male fertility. However, non-coding variants exhibit stronger association at all QTL suggesting that variants in regulatory regions contribute to variation in bull fertility. CONCLUSION: Our findings in a dairy cattle population provide evidence that recessive variants may contribute substantially to quantitative variation in male fertility in mammals. Detecting causal variants that underpin variation in male fertility remains difficult because the most strongly associated variants reside in poorly annotated non-coding regions.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Fertilidade/genética , Humanos , Inseminação Artificial , Masculino , Polimorfismo de Nucleotídeo Único , Análise do Sêmen
8.
Heredity (Edinb) ; 126(3): 410-423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159183

RESUMO

The estimation of the inbreeding coefficient (F) is essential for the study of inbreeding depression (ID) or for the management of populations under conservation. Several methods have been proposed to estimate the realized F using genetic markers, but it remains unclear which one should be used. Here we used whole-genome sequence data for 245 individuals from a Holstein cattle pedigree to empirically evaluate which estimators best capture homozygosity at variants causing ID, such as rare deleterious alleles or loci presenting heterozygote advantage and segregating at intermediate frequency. Estimators relying on the correlation between uniting gametes (FUNI) or on the genomic relationships (FGRM) presented the highest correlations with these variants. However, homozygosity at rare alleles remained poorly captured. A second group of estimators relying on excess homozygosity (FHOM), homozygous-by-descent segments (FHBD), runs-of-homozygosity (FROH) or on the known genealogy (FPED) was better at capturing whole-genome homozygosity, reflecting the consequences of inbreeding on all variants, and for young alleles with low to moderate frequencies (0.10 < . < 0.25). The results indicate that FUNI and FGRM might present a stronger association with ID. However, the situation might be different when recessive deleterious alleles reach higher frequencies, such as in populations with a small effective population size. For locus-specific inbreeding measures or at low marker density, the ranking of the methods can also change as FHBD makes better use of the information from neighboring markers. Finally, we confirmed that genomic measures are in general superior to pedigree-based estimates. In particular, FPED was uncorrelated with locus-specific homozygosity.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Bovinos/genética , Genótipo , Homozigoto , Linhagem
9.
BMC Genomics ; 21(1): 27, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914939

RESUMO

BACKGROUND: Autochthonous cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and food conditions. Original Braunvieh (OB) is a local cattle breed of Switzerland used for beef and milk production in alpine areas. Using whole-genome sequencing (WGS) data of 49 key ancestors, we characterize genomic diversity, genomic inbreeding, and signatures of selection in Swiss OB cattle at nucleotide resolution. RESULTS: We annotated 15,722,811 SNPs and 1,580,878 Indels including 10,738 and 2763 missense deleterious and high impact variants, respectively, that were discovered in 49 OB key ancestors. Six Mendelian trait-associated variants that were previously detected in breeds other than OB, segregated in the sequenced key ancestors including variants causal for recessive xanthinuria and albinism. The average nucleotide diversity (1.6  × 10- 3) was higher in OB than many mainstream European cattle breeds. Accordingly, the average genomic inbreeding derived from runs of homozygosity (ROH) was relatively low (FROH = 0.14) in the 49 OB key ancestor animals. However, genomic inbreeding was higher in OB cattle of more recent generations (FROH = 0.16) due to a higher number of long (> 1 Mb) runs of homozygosity. Using two complementary approaches, composite likelihood ratio test and integrated haplotype score, we identified 95 and 162 genomic regions encompassing 136 and 157 protein-coding genes, respectively, that showed evidence (P < 0.005) of past and ongoing selection. These selection signals were enriched for quantitative trait loci related to beef traits including meat quality, feed efficiency and body weight and pathways related to blood coagulation, nervous and sensory stimulus. CONCLUSIONS: We provide a comprehensive overview of sequence variation in Swiss OB cattle genomes. With WGS data, we observe higher genomic diversity and less inbreeding in OB than many European mainstream cattle breeds. Footprints of selection were detected in genomic regions that are possibly relevant for meat quality and adaptation to local environmental conditions. Considering that the population size is low and genomic inbreeding increased in the past generations, the implementation of optimal mating strategies seems warranted to maintain genetic diversity in the Swiss OB cattle population.


Assuntos
Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Alelos , Animais , Bovinos , Genética Populacional , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
BMC Genomics ; 21(1): 772, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167856

RESUMO

BACKGROUND: Imputation accuracy among other things depends on the size of the reference panel, the marker's minor allele frequency (MAF), and the correct placement of single nucleotide polymorphism (SNP) on the reference genome assembly. Using high-density genotypes of 3938 Nellore cattle from Brazil, we investigated the accuracy of imputation from 50 K to 777 K SNP density using Minimac3, when map positions were determined according to the bovine genome assemblies UMD3.1 and ARS-UCD1.2. We assessed the effect of reference and target panel sizes on the pre-phasing based imputation quality using ten-fold cross-validation. Further, we compared the reliability of the model-based imputation quality score (Rsq) from Minimac3 to the empirical imputation accuracy. RESULTS: The overall accuracy of imputation measured as the squared correlation between true and imputed allele dosages (R2dose) was almost identical using either the UMD3.1 or ARS-UCD1.2 genome assembly. When the size of the reference panel increased from 250 to 2000, R2dose increased from 0.845 to 0.917, and the number of polymorphic markers in the imputed data set increased from 586,701 to 618,660. Advantages in both accuracy and marker density were also observed when larger target panels were imputed, likely resulting from more accurate haplotype inference. Imputation accuracy increased from 0.903 to 0.913, and the marker density in the imputed data increased from 593,239 to 595,570 when haplotypes were inferred in 500 and 2900 target animals. The model-based imputation quality scores from Minimac3 (Rsq) were systematically higher than empirically estimated accuracies. However, both metrics were positively correlated and the correlation increased with the size of the reference panel and MAF of imputed variants. CONCLUSIONS: Accurate imputation of BovineHD BeadChip markers is possible in Nellore cattle using the new bovine reference genome assembly ARS-UCD1.2. The use of large reference and target panels improves the accuracy of the imputed genotypes and provides genotypes for more markers segregating at low frequency for downstream genomic analyses. The model-based imputation quality score from Minimac3 (Rsq) can be used to detect poorly imputed variants but its reliability depends on the size of the reference panel and MAF of the imputed variants.


Assuntos
Bovinos/genética , Polimorfismo de Nucleotídeo Único , Animais , Brasil , Frequência do Gene , Genótipo , Reprodutibilidade dos Testes
11.
Heredity (Edinb) ; 125(5): 304-316, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32651548

RESUMO

Meiotic recombination is an essential biological process that ensures proper chromosome segregation and creates genetic diversity. Individual variation in global recombination rates has been shown to be heritable in several species, and variants significantly associated with this trait have been identified. Recombination on the sex chromosome has often been ignored in these studies although this trait may be particularly interesting as it may correspond to a biological process distinct from that on autosomes. For instance, recombination in males is restricted to the pseudo-autosomal region (PAR). We herein used a large cattle pedigree with more than 100,000 genotyped animals to improve the genetic map of the X chromosome and to study the genetic architecture of individual variation in recombination rate on the sex chromosome (XRR). The length of the genetic map was 46.4 and 121.2 cM in males and females, respectively, but the recombination rate in the PAR was six times higher in males. The heritability of CO counts on the X chromosome was comparable to that of autosomes in males (0.011) but larger than that of autosomes in females (0.024). XRR was highly correlated (0.76) with global recombination rate (GRR) in females, suggesting that both traits might be governed by shared variants. In agreement, a set of eleven previously identified variants associated with GRR had correlated effects on female XRR (0.86). In males, XRR and GRR appeared to be distinct traits, although more accurate CO counts on the PAR would be valuable to confirm these results.


Assuntos
Bovinos , Recombinação Genética , Cromossomo X , Animais , Bovinos/genética , Feminino , Variação Genética , Genótipo , Masculino , Linhagem , Fenótipo , Cromossomo X/genética
12.
Genome Res ; 26(10): 1323-1332, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27516620

RESUMO

We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombination rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR. Fine-mapping following sequence-based imputation in 14,401 animals pinpointed likely causative coding (5) and noncoding (1) variants in genes known to be involved in meiotic recombination (HFM1, MSH4, RNF212, MLH3, MSH5) for 5/7 QTL, and noncoding variants (3) in RNF212B for 1/7 QTL. This suggests that this RNF212 paralog might also be involved in recombination. Most of the identified mutations had significant effects in both sexes, with three of them each accounting for ∼10% of the genetic variance in males.


Assuntos
Bovinos/genética , Recombinação Homóloga , Polimorfismo Genético , Animais , Feminino , Estudo de Associação Genômica Ampla , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Meiose/genética , Mutação , Locos de Características Quantitativas , Fatores Sexuais
13.
Genome Res ; 26(10): 1333-1341, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27646536

RESUMO

We herein report the result of a large-scale, next generation sequencing (NGS)-based screen for embryonic lethal (EL) mutations in Belgian beef and New Zealand dairy cattle. We estimated by simulation that cattle might carry, on average, ∼0.5 recessive EL mutations. We mined exome sequence data from >600 animals, and identified 1377 stop-gain, 3139 frame-shift, 1341 splice-site, 22,939 disruptive missense, 62,399 benign missense, and 92,163 synonymous variants. We show that cattle have a comparable load of loss-of-function (LoF) variants (defined as stop-gain, frame-shift, or splice-site variants) as humans despite having a more variable exome. We genotyped >40,000 animals for up to 296 LoF and 3483 disruptive missense, breed-specific variants. We identified candidate EL mutations based on the observation of a significant depletion in homozygotes. We estimated the proportion of EL mutations at 15% of tested LoF and 6% of tested disruptive missense variants. We confirmed the EL nature of nine candidate variants by genotyping 200 carrier × carrier trios, and demonstrating the absence of homozygous offspring. The nine identified EL mutations segregate at frequencies ranging from 1.2% to 6.6% in the studied populations and collectively account for the mortality of ∼0.6% of conceptuses. We show that EL mutations preferentially affect gene products fulfilling basic cellular functions. The resulting information will be useful to avoid at-risk matings, thereby improving fertility.


Assuntos
Bovinos/genética , Fertilidade/genética , Genes Letais , Mutação , Animais , Bovinos/embriologia , Bovinos/fisiologia , Testes Genéticos/métodos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Genética Reversa/métodos , Análise de Sequência de DNA/métodos
14.
PLoS Genet ; 10(1): e1004049, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391517

RESUMO

In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation. This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part of the negative genetic correlation. Our study adds to the evidence that structural variants contribute to animal phenotypic variation, and that balancing selection might be more common in livestock species than previously appreciated.


Assuntos
Fertilidade/genética , Leite , Seleção Genética , Deleção de Sequência/genética , Animais , Cruzamento , Bovinos , Laticínios , Metabolismo Energético/genética , Feminino , Genes Letais/genética , Lactação/genética , Gado , Camundongos , Proteínas do Leite/genética
15.
Nat Commun ; 15(1): 674, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253538

RESUMO

Breeding bulls are well suited to investigate inherited variation in male fertility because they are genotyped and their reproductive success is monitored through semen analyses and thousands of artificial inseminations. However, functional data from relevant tissues are lacking in cattle, which prevents fine-mapping fertility-associated genomic regions. Here, we characterize gene expression and splicing variation in testis, epididymis, and vas deferens transcriptomes of 118 mature bulls and conduct association tests between 414,667 molecular phenotypes and 21,501,032 genome-wide variants to identify 41,156 regulatory loci. We show broad consensus in tissue-specific and tissue-enriched gene expression between the three bovine tissues and their human and murine counterparts. Expression- and splicing-mediating variants are more than three times as frequent in testis than epididymis and vas deferens, highlighting the transcriptional complexity of testis. Finally, we identify genes (WDR19, SPATA16, KCTD19, ZDHHC1) and molecular phenotypes that are associated with quantitative variation in male fertility through transcriptome-wide association and colocalization analyses.


Assuntos
Epididimo , Locos de Características Quantitativas , Humanos , Bovinos , Animais , Masculino , Camundongos , Locos de Características Quantitativas/genética , Testículo , Consenso , Fertilidade/genética
16.
JDS Commun ; 3(2): 120-125, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36339738

RESUMO

Undisturbed reproduction is key for successful breeding of beef and dairy cattle. Improving reproductive ability can be difficult because of antagonistic relationships with other economically relevant traits. In cattle, thorough investigation of female fertility revealed unfavorable genetic correlations with various production phenotypes. However, the correlation between male reproductive ability and production traits remains poorly understood. Here, we investigated the genetic relationships among and between male fertility characteristics and economically relevant traits in a population of Brown Swiss cattle. We performed GWAS with imputed genotypes at nearly 12 million sequence variants for semen quality (sperm head and tail anomalies, motility, concentration, and volume), male fertility, and 57 production phenotypes. Allele substitution effects were then correlated on a trait-by-trait basis to estimate genetic correlations. Correlations between male reproductive characteristics and traits of economic value were small and ranged from -0.0681 to 0.0787. Among the semen quality parameters, sperm motility was negatively correlated with anomalies (head: r = -0.7083 ± 0.0002; tail: r = -0.7739 ± 0.0002) and volume (r = -0.1266 ± 0.0003), whereas volume was negatively correlated with concentration (r = -0.3503 ± 0.0002). Sire nonreturn rate was negatively correlated with sperm anomalies (head: r = -0.1640 ± 0.0002; tail: r = -0.1580 ± 0.0002) and positively correlated with motility (r = 0.1598 ± 0.0002). A meta-analysis of male reproductive traits identified 2 quantitative trait loci: a previously described region on chromosome 6 showed pleiotropic effects and a novel region on chromosome 11 was associated with sperm head anomalies. In conclusion, our results suggest that selection for economically important dairy and production phenotypes has little impact on semen quality and fertility of Brown Swiss bulls.

18.
Commun Biol ; 4(1): 1206, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675361

RESUMO

The branch point sequence is a cis-acting intronic motif required for mRNA splicing. Despite their functional importance, branch point sequences are not routinely annotated. Here we predict branch point sequences in 179,476 bovine introns and investigate their variability using a catalogue of 29.4 million variants detected in 266 cattle genomes. We localize the bovine branch point within a degenerate heptamer "nnyTrAy". An adenine residue at position 6, that acts as branch point, and a thymine residue at position 4 of the heptamer are more strongly depleted for mutations than coding sequences suggesting extreme purifying selection. We provide evidence that mutations affecting these evolutionarily constrained residues lead to alternative splicing. We confirm evolutionary constraints on branch point sequences using a catalogue of 115 million SNPs established from 3,942 human genomes of the gnomAD database.


Assuntos
Evolução Biológica , Bovinos/genética , Genoma , Íntrons/genética , Mutação , Animais , Éxons/genética , Genoma Humano , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA