Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 566(7745): 523-527, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30814712

RESUMO

Many physical phenomena create colour: spectrally selective light absorption by pigments and dyes1,2, material-specific optical dispersion3 and light interference4-11 in micrometre-scale and nanometre-scale periodic structures12-17. In addition, scattering, diffraction and interference mechanisms are inherent to spherical droplets18, which contribute to atmospheric phenomena such as glories, coronas and rainbows19. Here we describe a previously unrecognized mechanism for creating iridescent structural colour with large angular spectral separation. Light travelling along different trajectories of total internal reflection at a concave optical interface can interfere to generate brilliant patterns of colour. The effect is generated at interfaces with dimensions that are orders of magnitude larger than the wavelength of visible light and is readily observed in systems as simple as water drops condensed on a transparent substrate. We also exploit this phenomenon in complex systems, including multiphase droplets, three-dimensional patterned polymer surfaces and solid microparticles, to create patterns of iridescent colour that are consistent with theoretical predictions. Such controllable structural colouration is straightforward to generate at microscale interfaces, so we expect that the design principles and predictive theory outlined here will be of interest both for fundamental exploration in optics and for application in functional colloidal inks and paints, displays and sensors.

2.
Mikrochim Acta ; 189(3): 123, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226191

RESUMO

Printed graphene electrodes have been demonstrated as a versatile platform for electrochemical sensing, with numerous examples of rapid sensor prototyping using laboratory-scale printing techniques such as inkjet and aerosol jet printing. To leverage these materials in a scalable production framework, higher-throughput printing methods are required with complementary advances in ink formulation. Flexography printing couples the attractive benefits of liquid-phase graphene printing with large-scale manufacturing. Here, we investigate graphene flexography for the fabrication of electrodes by analyzing the impacts of ink and process parameters on print quality and electrical properties. Characterization of the printed patterns reveals anisotropic structure due to striations along the print direction, which is related to viscous fingering of the ink. However, high-resolution imaging reveals a dense graphene network even in regions of sparse coverage, contributing to robust electrical properties even for the thinnest films (< 100 nm). Moreover, the mechanical and environmental sensitivity of the printed electrodes is characterized, with particular focus on atmospheric response and thermal hysteresis. Overall, this work reveals the conditions under which graphene inks can be employed for high-speed flexographic printing, which will facilitate the development of graphene-based sensors and related devices.

3.
J Am Chem Soc ; 137(5): 1742-5, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25608577

RESUMO

Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. Here, we report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. This process connects the scalability of chemical exfoliation with the simplicity of solution processing, ultimately enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.


Assuntos
Dissulfetos/química , Molibdênio/química , Semicondutores , Compostos de Tungstênio/química , Modelos Moleculares , Conformação Molecular , Soluções , Solventes/química , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 109(43): 17336-41, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045634

RESUMO

Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions.


Assuntos
Dióxido de Silício , Alicerces Teciduais , Células Cultivadas , Microscopia Eletrônica de Transmissão
5.
J Am Chem Soc ; 136(38): 13138-41, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25170802

RESUMO

The asymmetry that pervades molecular mechanisms of living systems increasingly informs the aims of synthetic chemistry, particularly in the development of catalysts, particles, nanomaterials, and their assemblies. For particle synthesis, overcoming viscous forces to produce complex, nonspherical shapes is particularly challenging; a problem that is continuously solved in nature when observing dynamic biological entities such as cells. Here we bridge these dynamics to synthetic chemistry and show that the intrinsic asymmetric shapes of erythrocytes can be directed, captured, and translated into composites and inorganic particles using a process of nanoscale silica-bioreplication. We show that crucial aspects in particle design such as particle-particle interactions, pore size, and macromolecular accessibility can be tuned using cellular responses. The durability of resultant particles provides opportunities for shape-preserving transformations into metallic, semiconductive, and ferromagnetic particles and assemblies. The ability to use cellular responses as "structure directing agents" offers an unprecedented toolset to design colloidal-scale materials.


Assuntos
Materiais Biomiméticos/química , Forma Celular , Eritrócitos/citologia , Dióxido de Silício/química , Animais , Anisotropia , Fenômenos Biomecânicos , Biomimética , Humanos , Tamanho da Partícula , Propriedades de Superfície
6.
Adv Sci (Weinh) ; : e2402385, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965931

RESUMO

Polymerization in the solid state is generally infeasible due to restrictions on mobility. However, in this work, the solid-state photopolymerization of crystalline dicyclopentadiene is demonstrated via photoinitiated ring-opening metathesis polymerization. The source of mobility in the solid state is attributed to the plastic crystal nature of dicyclopentadiene, which yields local short-range mobility due to orientational degrees of freedom. Polymerization in the solid state enables photopatterning, volumetric additive manufacturing of free-standing structures, and fabrication with embedded components. Solid-state photopolymerization of dicyclopentadiene offers a new paradigm for advanced and freeform fabrication of high-performance thermosets.

7.
ACS Appl Mater Interfaces ; 15(50): 58897-58904, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38084015

RESUMO

Liquid crystal elastomers (LCEs) are a class of active materials that can generate rapid, reversible mechanical actuation in response to external stimuli. Fabrication methods for LCEs have remained a topic of intense research interest in recent years. One promising approach, termed 4D printing, combines the advantages of 3D printing with responsive materials, such as LCEs, to generate smart structures that not only possess user-defined static shapes but also can change their shape over time. To date, 4D-printed LCE structures have been limited to flat objects, restricting shape complexity and associated actuation for smart structure applications. In this work, we report the development of embedded 4D printing to extrude hydrophobic LCE ink into an aqueous, thixotropic gel matrix to produce free-standing, free-form 3D architectures without sacrificing the mechanical actuation properties. The ability to 4D print complex, free-standing 3D LCE architectures opens new avenues for the design and development of functional and responsive systems, such as reconfigurable metamaterials, soft robotics, or biomedical devices.

8.
Nat Commun ; 14(1): 981, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813785

RESUMO

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform's relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.

9.
Adv Mater ; 35(19): e2210665, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808776

RESUMO

An experimental investigation and the optical modeling of the structural coloration produced from total internal reflection interference within 3D microstructures are described. Ray-tracing simulations coupled with color visualization and spectral analysis techniques are used to model, examine, and rationalize the iridescence generated for a range of microgeometries, including hemicylinders and truncated hemispheres, under varying illumination conditions. An approach to deconstruct the observed iridescence and complex far-field spectral features into its elementary components and systematically link them to ray trajectories that emanate from the illuminated microstructures is demonstrated. The results are compared with experiments, wherein microstructures are fabricated with methods such as chemical etching, multiphoton lithography, and grayscale lithography. Microstructure arrays patterned on surfaces with varying orientation and size lead to unique color-traveling optical effects and highlight opportunities for how total internal reflection interference can be used to create customizable reflective iridescence. The findings herein provide a robust conceptual framework for rationalizing this multibounce interference mechanism and establish approaches for characterizing and tailoring the optical and iridescent properties of microstructured surfaces.

10.
J Am Chem Soc ; 134(9): 4007-10, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22335831

RESUMO

Integration of catalytic nanostructured platinum and palladium within 3D microscale structures or fluidic environments is important for systems ranging from micropumps to microfluidic chemical reactors and energy converters. We report a straightforward procedure to fabricate microscale patterns of nanocrystalline platinum and palladium using multiphoton lithography. These materials display excellent catalytic, electrical, and electrochemical properties, and we demonstrate high-resolution integration of catalysts within 3D defined microenvironments to generate directed autonomous particle and fluid transport.


Assuntos
Nanopartículas Metálicas/química , Paládio/química , Platina/química , Catálise , Tamanho da Partícula , Propriedades de Superfície
11.
Anal Chem ; 84(21): 8985-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23072333

RESUMO

We describe a technique to physically isolate single/individual cells from their surrounding environment by fabricating three-dimensional microchambers around selected cells under biocompatible conditions. Isolation of targeted cells is achieved via rapid fabrication of protein hydrogels from a biocompatible precursor solution using multiphoton lithography, an intrinsically 3D laser direct write microfabrication technique. Cells remain chemically accessible to environmental cues enabling their propagation into well-defined, high density populations. We demonstrate this methodology on gram negative (E. coli), gram positive (S. aureus), and eukaryotic (S. cerevisiae) cells. The opportunities to confine viable, single/individual-cells and small populations within user-defined microenvironments afforded by this approach should facilitate the study of cell behaviors across multiple generations.


Assuntos
Materiais Biocompatíveis , Separação Celular/métodos , Microtecnologia/métodos , Animais , Sobrevivência Celular , Escherichia coli/citologia , Hidrogéis , Saccharomyces cerevisiae/citologia , Soroalbumina Bovina/química , Staphylococcus aureus/citologia
12.
Proc Natl Acad Sci U S A ; 105(26): 8850-4, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18579775

RESUMO

We report a method for creating stimuli-responsive biomaterials in which scanning nonlinear excitation is used to photocrosslink proteins at submicrometer 3D coordinates. Proteins with differing hydration properties can be combined to achieve tunable volume changes that are rapid and reversible in response to changes in chemical environment. Protein matrices having arbitrary 3D topographies and definable density gradients over micrometer dimensions provide the ability to effect rapid (<1 sec) and precise mechanical manipulations by means of changes in hydrogel size and shape, and applicability of these materials to cell biology is shown through the fabrication of responsive bacterial cages.


Assuntos
Hidrogéis/metabolismo , Fotoquímica/métodos , Fótons , Proteínas/metabolismo , Animais , Avidina/metabolismo , Bovinos , Escherichia coli/citologia , Concentração de Íons de Hidrogênio , Muramidase/metabolismo , Soroalbumina Bovina/metabolismo
13.
Sci Rep ; 10(1): 15352, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948782

RESUMO

Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment. This capability enables new routes for non-binary information storage, retrieval, and intrinsic encryption, and it suggests future technologies such as photonic chips that can be reconfigured using non-contact patterning.

14.
Lab Chip ; 9(18): 2632-7, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19704977

RESUMO

Use of motile cells as sensors and actuators in microfabricated devices requires precise design of interfaces between living and non-living components, a process that has relied on slow revision of device architectures as prototypes are sequentially evaluated and re-designed. In this report, we describe a microdesign and fabrication approach capable of iteratively refining three-dimensional bacterial interfaces in periods as short as 10 minutes, and demonstrate its use to drive fluid transport by harnessing flagellar motion. In this approach, multiphoton excitation is used to promote protein photocrosslinking in a direct-write procedure mediated by static and dynamic masking, with the resultant microstructures serving to capture motile bacteria from the surrounding fluidic environment. Reproducible steering and patterning of flagellated E. coli cells drive microfluidic currents capable of guiding micro-objects on predictable trajectories with velocities reaching 150 microm s(-1) and achieving bulk flow through microchannels. We show that bacteria can be dynamically immobilized at specified positions, an approach that frees such devices from limitations imposed by the functional lifetime of cells. These results provide a foundation for the development of sophisticated microfluidic devices powered by cells.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microfluídica/métodos , Desenho de Equipamento , Escherichia coli/fisiologia , Flagelos/fisiologia , Indicadores e Reagentes , Microesferas , Movimento , Nanotecnologia
15.
Small ; 5(1): 120-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19040218

RESUMO

A strategy for rapidly printing three-dimensional (3D) microscopic replicas using multiphoton lithography directed by a dynamic electronic mask is reported. Morphological descriptions of 3D structures are encoded as stacks of 2D slices created from tomographic and computer-designed instruction sets. In this manner, digital images serve as input for a sequence of reflective photomasks on a digital micromirror device to direct replication of a structure. By scanning a laser focus across the face of the intrinsically aligned masks, tomographic and computed data can be translated into protein-based 3D reproductions with submicrometer feature sizes within 1 min. This straightforward and highly versatile approach may provide improved routes for the development of 3D cellular scaffolds, rapid prototyping of microanalytical devices, and production of custom tissue replacements.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Engenharia Tecidual , Óxido de Alumínio/química , Escherichia coli/química , Microscopia de Fluorescência por Excitação Multifotônica , Desenho de Prótese/métodos , Alicerces Teciduais , Titânio/química
16.
Adv Biosyst ; 3(4): e1800285, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-32627427

RESUMO

The synthesis of materials that can mimic the mechanical, and ultimately functional, properties of biological cells can broadly impact the development of biomimetic materials, as well as engineered tissues and therapeutics. Yet, it is challenging to synthesize, for example, microparticles that share both the anisotropic shapes and the elastic properties of living cells. Here, a cell-directed route to replicate cellular structures into synthetic hydrogels such as polyethylene glycol (PEG) is described. First, the internal and external surfaces of chemically fixed cells are replicated in a conformal layer of silica using a sol-gel process. The template is subsequently removed to render shape-preserved, mesoporous silica replicas. Infiltration and cross-linking of PEG precursors and dissolution of the silica result in a soft hydrogel replica of the cellular template as demonstrated using erythrocytes, HeLa, and neuronal cultured cells. The elastic modulus can be tuned over an order of magnitude (≈10-100 kPa) though with a high degree of variability. Furthermore, synthesis without removing the biotemplate results in stimuli-responsive particles that swell/deswell in response to environmental cues. Overall, this work provides a foundation to develop soft particles with nearly limitless architectural complexity derived from dynamic biological templates.


Assuntos
Materiais Biomiméticos/química , Forma Celular/fisiologia , Técnicas Citológicas/métodos , Hidrogéis/química , Biologia Sintética/métodos , Células Cultivadas , Módulo de Elasticidade/fisiologia , Células HeLa , Humanos , Dióxido de Silício/química
17.
Adv Healthc Mater ; 8(2): e1801188, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549244

RESUMO

Biomaterial properties that modulate T cell activation, growth, and differentiation are of significant interest in the field of cellular immunotherapy manufacturing. In this work, a new platform technology that allows for the modulation of various activation particle design parameters important for polyclonal T cell activation is presented. Artificial antigen presenting cells (aAPCs) are successfully created using supported lipid bilayers on various cell-templated silica microparticles with defined membrane fluidity and stimulating antibody density. This panel of aAPCs is used to probe the importance of activation particle shape, size, membrane fluidity, and stimulation antibody density on T cell outgrowth and differentiation. All aAPC formulations are able to stimulate T cell growth, and preferentially promote CD8+ T cell growth over CD4+ T cell growth when compared to commercially available pendant antibody-conjugated particles. T cells cultured with HeLa- and red blood cell-templated aAPCs have a less-differentiated and less-exhausted phenotype than those cultured with spherical aAPCs with matched membrane coatings when cultured for 14 days. These results support continued exploration of silica-supported lipid bilayers as an aAPC platform.


Assuntos
Células Apresentadoras de Antígenos/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Bicamadas Lipídicas/química , Ativação Linfocitária , Anticorpos , Células Apresentadoras de Antígenos/fisiologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Eritrócitos/citologia , Células HeLa , Humanos , Tamanho da Partícula , Estudo de Prova de Conceito , Dióxido de Silício
19.
Adv Mater ; 30(20): e1706787, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29602188

RESUMO

Charge-transfer materials based on the self-assembly of aromatic donor-acceptor complexes enable a modular organic-synthetic approach to develop and fine-tune electronic and optical properties, and thus these material systems stand to impact a wide range of technologies. Through laser-induction of temperature gradients, in this study, user-defined patterning of strongly dichroic and piezoelectric organic thin films composed of donor-acceptor columnar liquid crystals is shown. Fine, reversible control over isotropic versus anisotropic regions in thin films is demonstrated, enabling noncontact writing/rewriting of micropolarizers, bar codes, and charge-transfer based devices.

20.
ACS Nano ; 11(2): 1389-1396, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28112951

RESUMO

Control over the thermal conductance from excited molecules into an external environment is essential for the development of customized photothermal therapies and chemical processes. This control could be achieved through molecule tuning of the chemical moieties in fullerene derivatives. For example, the thermal transport properties in the fullerene derivatives indene-C60 monoadduct (ICMA), indene-C60 bisadduct (ICBA), [6,6]-phenyl C61 butyric acid methyl ester (PCBM), [6,6]-phenyl C61 butyric acid butyl ester (PCBB), and [6,6]-phenyl C61 butyric acid octyl ester (PCBO) could be tuned by choosing a functional group such that its intrinsic vibrational density of states bridge that of the parent molecule and a liquid. However, this effect has never been experimentally realized for molecular interfaces in liquid suspensions. Using the pump-probe technique time domain thermotransmittance, we measure the vibrational relaxation times of photoexcited fullerene derivatives in solutions and calculate an effective thermal boundary conductance from the opto-thermally excited molecule into the liquid. We relate the thermal boundary conductance to the vibrational modes of the functional groups using density of states calculations from molecular dynamics. Our findings indicate that the attachment of an ester group to a C60 molecule, such as in PCBM, PCBB, and PCBO, provides low-frequency modes which facilitate thermal coupling with the liquid. This offers a channel for heat flow in addition to direct coupling between the buckyball and the liquid. In contrast, the attachment of indene rings to C60 does not supply the same low-frequency modes and, thus, does not generate the same enhancement in thermal boundary conductance. Understanding how chemical functionalization of C60 affects the vibrational thermal transport in molecule/liquid systems allows the thermal boundary conductance to be manipulated and adapted for medical and chemical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA