Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 879: 163179, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37003330

RESUMO

Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.


Assuntos
COVID-19 , Praguicidas , Humanos , Saneamento , Banheiros , Higiene , Menstruação , Preparações Farmacêuticas
2.
Water Res ; 217: 118427, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436734

RESUMO

This work presents a mathematical method to describe adsorptive removal of organic micropollutants (OMPs) and dissolved organic carbon (DOC) from wastewater treatment plant effluent using powdered activated carbon (PAC). The developed model is based on the tracer model (TRM) as a modification of the ideal adsorbed solution theory (IAST) and uses the fictive component approach for organic matter fractionation. It enables the simulation of multisolute adsorption of OMPs considering competitive adsorption behavior of organic background compounds (OBC). Adsorption equilibrium data for DOC and seven different OMPs as well as kinetic data for DOC were derived from batch experiments performed with secondary clarifier effluent of two municipal wastewater treatment plants (WWTP 1 and WWTP 2). Two conventional PAC products were investigated as well as one biogenic PAC (BioPAC). Verification and validation of the fitting results based on operational data of WWTP 1 showed promising prediction of DOC and OMP removal efficiency. However, when applied to a static simulation of a full-scale PAC adsorption stage, the model overpredicts the removal efficiency of sulfamethoxazole and candesartan. For benzotriazole, carbamazepine or hydrochlorothiazide, predicted removal falls below operational removal. The model can be used to predict removals of good adsorbable OMPs but fails to accurately predict the removals of OMPs with variable or low PAC affinity. The model was further used for a dynamic simulation of DOC and diclofenac effluent concentrations of a full-scale PAC adsorption stage with varying operating conditions and influent concentrations. Results show that the hydraulic retention time (HRT) in the contact reactor is a decisive operational parameter for OMP removal efficiency besides the PAC dose.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Compostos Orgânicos , Pós , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
J Environ Qual ; 50(5): 1097-1109, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34197639

RESUMO

The benefit of biochar as a soil fertility enhancer is well known and has been broadly investigated. Equally, many tropical and subtropical countries use wastewater for irrigation in urban agriculture. To assess the related health risks, we determined pathogen and heavy metal fate associated with biochar application and wastewater irrigation in the urban agriculture of northern Ghana. Rice (Oryza L.) husk biochar (20 t ha-1 ), N-P-K 15-15-15 fertilizer (212.5 kg ha-1 ), and their combinations were evaluated in a field-based experiment. Untreated wastewater and tap water served as irrigation water. Red amaranth (Amaranthus cruentus L.) was used as a test crop and was grown in wet (WS) and dry (DS) cropping seasons. Irrigation water, soil, and vegetables were analyzed for heavy metals, Escherichia coli, fecal coliform, helminth eggs, and Salmonella spp. Unlike the pathogens, analyzed heavy metals from irrigation water and soil were below the FAO/WHO permissible standard for agricultural activities. Wastewater irrigation caused E. coli concentrations ranging from 0.5 to 0.6 (WS) and from 0.7 to 0.8 (DS) log10 colony forming units per gram fresh weight (CFU gFW -1 ) on vegetables and from 1.7 to 2.1 (WS) and from 0.6 to 1.0 (DS) log10 CFU per gram dry weight (gDW -1 ) in soil. Average log10 CFU gFW -1 rates of 6.19 and 3.44 fecal coliform were found on vegetables, whereas in soil, 4.26 and 4.58 log10 CFU gDW -1 were observed in WS and DS, respectively. Helminth egg populations were high in wastewater and were transferred to the crops and soil. Biochar did not affect bacteria contamination. Pathogen contamination on vegetables and in soil were directly linked to the irrigation water, with minimal or no difference observed from biochar application.


Assuntos
Metais Pesados , Poluentes do Solo , Irrigação Agrícola , Carvão Vegetal , Escherichia coli , Gana , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Águas Residuárias
4.
Sci Rep ; 10(1): 1229, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988298

RESUMO

The efficiency of anaerobic biofilters (AnBF) as low-cost wastewater treatment systems was investigated. Miscanthus-biochar was used as filtration media and compared with sand as a common reference material. Raw sewage from a municipal wastewater treatment plant was stored in a sedimentation tank for two days to allow pre-settlement of wastewater particles. Subsequently, wastewater was treated by AnBFs at 22 °C room temperature at a hydraulic loading rate of 0.05 m∙h-1 with an empty bed contact time of 14.4 h and a mean organic loading rate of 509 ± 173 gCOD∙m-3∙d-1. Mean removal of chemical oxygen demand (COD) of biochar filters was with 74 ± 18% significantly higher than of sand filters (61 ± 12%). In contrast to sand filters with a mean reduction of 1.18 ± 0.31 log-units, E. coli removal through biochar was with 1.35 ± 0.27 log-units significantly higher and increased with experimental time. Main removal took place within the schmutzdecke, a biologically active dirt layer that develops simultaneously on the surface of filter beds. Since the E. coli contamination of both filter materials was equal, the higher removal efficiency of biochar filters is probably a result of an improved biodegradation within deeper zones of the filter bed. Overall, performance of biochar filters was better or equal compared to sand and have thus demonstrated the suitability of Miscanthus-biochar as filter media for wastewater treatment.

5.
Sci Total Environ ; 682: 601-610, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128373

RESUMO

In this study, the suitability of an anaerobic biofilter (AnBF) as an efficient and low-cost wastewater treatment for safer irrigation water production for Sub-Saharan Africa was investigated. To determine the influence of different ubiquitous available materials on the treatment efficiency of the AnBF, rice husks and their pyrolysed equivalent, rice husk biochar, were used as filtration media and compared with sand as a common reference material. Raw sewage from a municipal full-scale wastewater treatment plant pretreated with an anaerobic filter (AF) was used in this experiment. The filters were operated at 22 °C room temperature with a hydraulic loading rate of 0.05 m·h-1 for 400 days. The mean organic loading rate (OLR) of the AF was 194 ±â€¯74 and 63 ±â€¯16 gCOD·m-3·d-1 for the AnBF. Fecal indicator bacteria (FIB) (up to 3.9 log10-units), bacteriophages (up to 2.7 log10-units), chemical oxygen demand (COD) (up to 94%) and turbidity (up to 97%) could be significantly reduced. Additionally, the essential plant nutrients nitrogen and phosphorous were not significantly affected by the water treatment. Overall, the performance of the biochar filters was significantly better than or equal to the sand and rice husk filters. By using the treated wastewater for irrigating lettuce plants in a pot experiment, the contamination with FIB was >2.5 log-units lower (for most of the plants below the detection limit of 5.6 MPN per gram fresh weight) than for plants irrigated with raw wastewater. Respective soil samples were minimally contaminated and nearly in the same range as that of tap water.


Assuntos
Carvão Vegetal , Fazendas , Eliminação de Resíduos Líquidos/métodos , Irrigação Agrícola , Agricultura , Países em Desenvolvimento , Águas Residuárias/química , Microbiologia da Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA