Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 140(5): 666-77, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211136

RESUMO

In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Histona-Lisina N-Metiltransferase , Metiltransferases/genética , Interferência de RNA , Proteínas de Schizosaccharomyces pombe/genética
2.
Mol Cell ; 33(3): 299-311, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217404

RESUMO

The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/análise , Mutação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/análise , Proteínas de Schizosaccharomyces pombe/genética
3.
J Cell Sci ; 125(Pt 2): 411-21, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331359

RESUMO

Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.


Assuntos
Centrômero/metabolismo , Epigênese Genética , Histonas/metabolismo , Cinetocoros/fisiologia , Acetilação , Autoantígenos/metabolismo , Linhagem Celular , Proteína Centromérica A , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais Humanos , Proteína Vmw65 do Vírus do Herpes Simples/genética , Histonas/química , Humanos , Cinetocoros/química , Lisina/metabolismo , Proteínas Recombinantes de Fusão , Fator de Transcrição RelA/genética
4.
EMBO J ; 28(24): 3832-44, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19942857

RESUMO

The formation of heterochromatin at the centromeres in fission yeast depends on transcription of the outer repeats. These transcripts are processed into siRNAs that target homologous loci for heterochromatin formation. Here, high throughput sequencing of small RNA provides a comprehensive analysis of centromere-derived small RNAs. We found that the centromeric small RNAs are Dcr1 dependent, carry 5'-monophosphates and are associated with Ago1. The majority of centromeric small RNAs originate from two remarkably well-conserved sequences that are present in all centromeres. The high degree of similarity suggests that this non-coding sequence in itself may be of importance. Consistent with this, secondary structure-probing experiments indicate that this centromeric RNA is partially double-stranded and is processed by Dicer in vitro. We further demonstrate the existence of small centromeric RNA in rdp1Delta cells. Our data suggest a pathway for siRNA generation that is distinct from the well-documented model involving RITS/RDRC. We propose that primary transcripts fold into hairpin-like structures that may be processed by Dcr1 into siRNAs, and that these siRNAs may initiate heterochromatin formation independent of RDRC activity.


Assuntos
Centrômero/ultraestrutura , Regulação Fúngica da Expressão Gênica , RNA Interferente Pequeno/metabolismo , Schizosaccharomyces/fisiologia , Sequência de Bases , Centrômero/metabolismo , Heterocromatina/química , Dados de Sequência Molecular , Família Multigênica , Mutação , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Schizosaccharomyces/metabolismo , Homologia de Sequência do Ácido Nucleico
5.
EMBO Rep ; 11(2): 112-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20062003

RESUMO

RNA interference (RNAi) is widespread in eukaryotes and regulates gene expression transcriptionally or post-transcriptionally. In fission yeast, RNAi is tightly coupled to template transcription and chromatin modifications that establish heterochromatin in cis. Exogenous double-stranded RNA (dsRNA) triggers seem to induce heterochromatin formation in trans only when certain silencing proteins are overexpressed. Here, we show that green fluorescent protein (GFP) hairpin dsRNA allows production of high levels of Argonaute-associated small interfering RNAs (siRNAs), which can induce heterochromatin formation at a remote locus. This silencing does not require any manipulation apart from hairpin expression. In cells expressing a ura4(+)-GFP fusion gene, production of GFP siRNAs causes the appearance of ura4 siRNAs from the target gene. Production of these secondary siRNAs depends on RNA-dependent RNA polymerase Rdp1 (RDRP(Rdp1)) function and other RNAi pathway components. This demonstrates that transitivity occurs in fission yeast and implies that RDRP(Rdp1) can synthesize RNA from targeted RNA templates in vivo, generating siRNAs not homologous to the hairpin.


Assuntos
Inativação Gênica , Sequências Repetidas Invertidas , RNA Interferente Pequeno/biossíntese , RNA/fisiologia , Schizosaccharomyces/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Sequências Repetidas Invertidas/fisiologia , Organismos Geneticamente Modificados , RNA/química
6.
Sci Rep ; 12(1): 18975, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348001

RESUMO

Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Transcriptoma , Glioma/patologia , Neoplasias Encefálicas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Biol Futur ; 72(2): 119-125, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34554469

RESUMO

This paper aims to help policy makers with a characterization of the intrinsic value of biodiversity and its role as a critical foundation for sustainable development, human health, and well-being. Our objective is to highlight the urgent need to overcome economic, disciplinary, national, cultural, and regional barriers, in order to work out innovative measures to create a sustainable future and prevent the mutual extinction of humans and other species. We emphasize the pervasive neglect paid to the cross-dependency of planetary health, the health of individual human beings and other species. It is critical that social and natural sciences are taken into account as key contributors to forming policies related to biodiversity, conservation, and health management. We are reaching the target date of Nagoya treaty signatories to have accomplished measures to prevent biodiversity loss, providing a unique opportunity for policy makers to make necessary adjustments and refocus targets for the next decade. We propose recommendations for policy makers to explore novel avenues to halt the accelerated global loss of biodiversity. Beyond the critical ecological functions biodiversity performs, its enormous untapped the repertoire of natural molecular diversity is needed for solving accelerating global healthcare challenges.


Assuntos
Biodiversidade , Descoberta de Drogas/métodos , Política de Saúde/tendências , Desenvolvimento Sustentável/tendências , Descoberta de Drogas/normas , Humanos
8.
Biol Direct ; 16(1): 23, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749806

RESUMO

During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Cells ; 10(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944027

RESUMO

Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial-mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Diferenciação Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Metástase Neoplásica , Neoplasias/terapia , Células Th2/metabolismo , Microambiente Tumoral/genética
10.
Sci Rep ; 11(1): 6489, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753795

RESUMO

Plant-derived extracellular vesicles (EVs) gain more and more attention as promising carriers of exogenous bioactive molecules to the human cells. Derived from various edible sources, these EVs are remarkably biocompatible, biodegradable and highly abundant from plants. In this work, EVs from grapefruit juice were isolated by differential centrifugation followed by characterization of their size, quantity and morphology by nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy and cryo-electron microscopy (Cryo-EM). In Cryo-EM experiments, we visualized grapefruit EVs with the average size of 41 ± 13 nm, confirmed their round-shaped morphology and estimated the thickness of their lipid bilayer as 5.3 ± 0.8 nm. Further, using cell culture models, we have successfully demonstrated that native grapefruit-derived extracellular vesicles (GF-EVs) are highly efficient carriers for the delivery of the exogenous Alexa Fluor 647 labeled bovine serum albumin (BSA) and heat shock protein 70 (HSP70) into both human peripheral blood mononuclear cells and colon cancer cells. Interestingly, loading to plant EVs significantly ameliorated the uptake of exogenous proteins by human cells compared to the same proteins without EVs. Most importantly, we have confirmed the functional activity of human recombinant HSP70 in the colon cancer cell culture upon delivery by GF-EVs. Analysis of the biodistribution of GF-EVs loaded with 125I-labeled BSA in mice demonstrated a significant uptake of the grapefruit-derived extracellular vesicles by the majority of organs. The results of our study indicate that native plant EVs might be safe and effective carriers of exogenous proteins into human cells.


Assuntos
Citrus paradisi/química , Vesículas Extracelulares/química , Nanocápsulas/química , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Células HCT116 , Proteínas de Choque Térmico HSP70/administração & dosagem , Humanos , Leucócitos Mononucleares/metabolismo , Nanocápsulas/ultraestrutura , Soroalbumina Bovina/administração & dosagem
11.
Biomedicines ; 8(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333870

RESUMO

According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.

12.
Cells ; 10(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375680

RESUMO

Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.


Assuntos
Células Epiteliais , Proteínas de Membrana/fisiologia , Proteína Tumoral p73/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Poliploidia , Splicing de RNA
13.
Artigo em Inglês | MEDLINE | ID: mdl-31803736

RESUMO

During cancer genesis, the extracellular matrix (ECM) in the human brain undergoes important transformations, starting to resemble embryonic brain cell milieu with a much denser structure. However, the stiffness of the tumor ECM does not preclude cancer cells from migration. The importance of the ECM role in normal brain tissue as well as in tumor homeostasis has engaged much effort in trials to implement ECM as a target and an instrument in the treatment of brain cancers. This review provides a detailed analysis of both experimental and applied approaches in combined therapy for gliomas in adults. In general, matrix materials for glioma treatment should have properties facilitating the simplest delivery into the body. Hence, to deliver an artificial implant directly into the operation cavity it should be packed into a gel form, while for bloodstream injections matrix needs to be in the form of polymer micelles, nanoparticles, etc. Furthermore, the delivered material should mimic biomechanical properties of the native tissue, support vital functions, and slow down or stop the proliferation of surrounding cells for a prolonged period. The authors propose a two-step approach aimed, on the one hand, at elimination of remaining cancer cells and on the other hand, at restoring normal brain tissue. Thereby, the first bioartificial matrix to be applied should have relatively low elastic modulus should be loaded with anticancer drugs, while the second material with a higher elastic modulus for neurite outgrowth support should contain specific factors stimulating neuroregeneration.

14.
Toxicon ; 169: 1-4, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352010

RESUMO

Solitary aculeate wasps are abundant and diverse hymenopteran insects that disable prey using venom. The venom may possess neuromodulation, immunomodulatory, metabolic-modulatory and antimicrobial functions. Venom analysis of transcriptomes and proteomes has been previously performed in social and parasitoid wasp species. We develop methodologies including mass spectrometry-based shotgun proteomics to analyse the protein constituents from venom sacs of the solitary aculeate wasp Cerceris rybyensis. The venom sac constituents of C. rybyensis are discussed with respect to other wasp species.


Assuntos
Venenos de Vespas/química , Vespas/química , Animais , Feminino , Proteômica , Espectrometria de Massas em Tandem
15.
AIMS Genet ; 5(2): 91-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31435515

RESUMO

The modulation of tumor growth and development in vitro has always been one of the key factors in the research of the malignant transformation, including gliomas, prevalent and most deadly cancers of the brain. Indeed, cellular and molecular biology research employing in vitro model cell-based systems have great potential to advance both the mechanistic understanding and the treatment of human glial tumors, as it facilitates not only the understanding of glioma biology and its regulatory mechanisms Additionally they promise to afford the screening of the putative anti-tumor agents and alternative treatment approaches in a personalized manner, i.e. by virtue of using the patient-derived tumor material for such tests. However, in order to become reliable and representative, glioma model systems need to move towards including most inherent cancer features such as local hypoxia, specific genetic aberrations, native tumor microenvironment, and the three-dimensional extracellular matrix. This review starts with a brief introduction on the general epidemiological and molecular characteristics of gliomas followed by an overview of the cell-based in vitro models currently used in glioma research. As a conclusion, we suggest approaches to move to innovative cell-based in vitro glioma models. We consider that main criteria for selecting these approaches should include the adequate resemblance to the key in vivo characteristics, robustness, cost-effectiveness and ease to use, as well as the amenability to high throughput handling to allow the standardized drug screening.

16.
Oncotarget ; 9(49): 29259-29274, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30018750

RESUMO

Medicinal mushrooms have been used throughout the history of mankind for treatment of various diseases including cancer. Nowadays they have been intensively studied in order to reveal the chemical nature and mechanisms of action of their biomedical capacity. Targeted treatment of cancer, non-harmful for healthy tissues, has become a desired goal in recent decades and compounds of fungal origin provide a vast reservoir of potential innovational drugs. Here, on example of four mushrooms common for use in Asian and Far Eastern folk medicine we demonstrate the complex and multilevel nature of their anticancer potential, basing upon different groups of compounds that can simultaneously target diverse biological processes relevant for cancer treatment, focusing on targeted approaches specific to malignant tissues. We show that some aspects of fungotherapy of tumors are studied relatively well, while others are still waiting to be fully unraveled. We also pay attention to the cancer types that are especially susceptible to the fungal treatments.

17.
Front Cell Neurosci ; 12: 388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510501

RESUMO

Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.

18.
AIMS Genet ; 5(1): 75-90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31435514

RESUMO

Esophageal cancer is an increasing concern due to poor prognosis, aggressive disease modalities, and a lack of efficient therapeutics. The two types of esophageal cancer: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are responsible for an estimated 450,000 annual deaths, with over 457,000 new patients diagnosed in 2015, making it the eighth most prevalent and the 10th most fatal cancer worldwide. As esophageal cancer prevalence continues to increase, and so does the pressing need for the development of new and effective strategies for the early diagnostics, prevention, and treatment of this cancer, as well for building the innovative research tools to understand the affected molecular mechanisms. This short review summarizes the current statistics and recent research of the problems and solutions related to the esophageal cancer, and offer a brief overview of its epidemiology, molecular alterations, and existing biomedical tools. We will discuss currently available research tools and discuss selected approaches we deem relevant to find new model systems and therapies for the future with the special focus on novel opportunities presented by the unique molecules found in algae, namely carbohydrates and lipids. Their remarkable chemical variability is connected to their striking structural and functional properties, which combined with the relative novelty of these compounds to cancer biology, warrants interest of the wide biomedical community to these molecules, especially in the esophageal cancer theory and practice.

20.
Artigo em Inglês | MEDLINE | ID: mdl-28392375

RESUMO

Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections.


Assuntos
Antibacterianos/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Agonismo de Drogas , Descoberta de Drogas , Poríferos/química , Acetatos/química , Ampicilina/agonistas , Ampicilina/farmacologia , Animais , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/isolamento & purificação , Organismos Aquáticos/crescimento & desenvolvimento , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cloranfenicol/agonistas , Cloranfenicol/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Oceano Índico , Maurício , Testes de Sensibilidade Microbiana , Poríferos/crescimento & desenvolvimento , Sitosteroides/análise , Sitosteroides/isolamento & purificação , Sitosteroides/farmacologia , Solventes/química , Tetraciclina/agonistas , Tetraciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA