Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 473: 59-70, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484704

RESUMO

Xenopus tadpoles are a unique model for regeneration in that they exhibit two distinct phases of age-specific regenerative competence. In Xenopus laevis, young tadpoles fully regenerate following major injuries such as tail transection, then transiently lose regenerative competence during the "refractory period" from stages 45-47. Regenerative competence is then regained in older tadpoles before being permanently lost during metamorphosis. Here we show that a similar refractory period exists in X. tropicalis. Notably, tadpoles lose regenerative competence gradually in X. tropicalis, with full regenerative competence lost at stage 47. We find that the refractory period coincides closely with depletion of maternal yolk stores and the onset of independent feeding, and so we hypothesized that it might be caused in part by nutrient stress. In support of this hypothesis, we find that cell proliferation declines throughout the tail as the refractory period approaches. When we block nutrient mobilization by inhibiting mTOR signaling, we find that tadpole growth and regeneration are reduced, while yolk stores persist. Finally, we are able to restore regenerative competence and cell proliferation during the refractory period by abundantly feeding tadpoles. Our study argues that nutrient stress contributes to lack of regenerative competence and introduces the X. tropicalis refractory period as a valuable new model for interrogating how metabolic constraints inform regeneration.


Assuntos
Regeneração/fisiologia , Cauda/fisiologia , Xenopus/embriologia , Animais , Proliferação de Células , Gema de Ovo , Larva/metabolismo , Metamorfose Biológica/fisiologia , Nutrientes , Transdução de Sinais , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
2.
Dev Dyn ; 250(5): 717-731, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368695

RESUMO

BACKGROUND: Explanted tissues from vertebrate embryos reliably develop in culture and have provided essential paradigms for understanding embryogenesis, from early embryological investigations of induction, to the extensive study of Xenopus animal caps, to the current studies of mammalian gastruloids. Cultured explants of the Xenopus dorsal marginal zone ("Keller" explants) serve as a central paradigm for studies of convergent extension cell movements, yet we know little about the global patterns of gene expression in these explants. RESULTS: In an effort to more thoroughly develop this important model system, we provide here a time-resolved bulk transcriptome for developing Keller explants. CONCLUSIONS: The dataset reported here provides a useful resource for those using Keller explants for studies of morphogenesis and provide genome-scale insights into the temporal patterns of gene expression in an important tissue when explanted and grown in culture.


Assuntos
Técnicas de Cultura Embrionária , Gástrula/metabolismo , Transcriptoma , Xenopus laevis/metabolismo , Animais , Xenopus laevis/genética
3.
STAR Protoc ; 5(1): 102895, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367232

RESUMO

Functional studies in post-embryonic Xenopus tadpoles are challenging because embryonic perturbations often lead to developmental consequences, such as lethality. Here, we describe a high-throughput protocol for tail vein injection to introduce fluorescent tracers into tadpoles, which we have previously used to effectively inject morpholinos and molecular antagonists. We describe steps for safely positioning tadpoles onto agarose double-coated plates, draining media, injecting into the ventral tail vein, rehydrating plates, and sorting tadpoles by fluorescence with minimal injury for high-throughput experiments. For complete details on the use and execution of this protocol, please refer to Kakebeen et al.,1 Patel et al.,2 and Patel et al.3.


Assuntos
Xenopus , Animais , Xenopus laevis , Larva
4.
Front Physiol ; 10: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800076

RESUMO

The remarkable regenerative capabilities of amphibians have captured the attention of biologists for centuries. The frogs Xenopus laevis and Xenopus tropicalis undergo temporally restricted regenerative healing of appendage amputations and spinal cord truncations, injuries that are both devastating and relatively common in human patients. Rapidly expanding technological innovations have led to a resurgence of interest in defining the factors that enable regenerative healing, and in coupling these factors to human therapeutic interventions. It is well-established that early embryonic signaling pathways are critical for growth and patterning of new tissue during regeneration. A growing body of research now indicates that early physiological injury responses are also required to initiate a regenerative program, and that these differ in regenerative and non-regenerative contexts. Here we review recent insights into the biophysical, biochemical, and epigenetic processes that underlie regenerative healing in amphibians, focusing particularly on tail and limb regeneration in Xenopus. We also discuss the more elusive potential mechanisms that link wounding to tissue growth and patterning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA