Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 24(1): 2158043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684848

RESUMO

In this study, tensile and creep deformation of a high-entropy alloy processed by selective laser melting (SLM) has been investigated; hot ductility drop was identified at first, and the loss of ductility at elevated temperature was associated with intergranular fracture. By modifying the grain boundary morphology from straight to serration, the hot ductility drop issue has been resolved successfully. The serrated grain boundary could be achieved by reducing the cooling rate of solution heat treatment, which allowed the coarsening of L12 structured γ' precipitates to interfere with mobile grain boundaries, resulting in undulation of the grain boundary morphology. Tensile and creep tests at 650°C were conducted, and serrated grain boundary could render a significant increase in tensile fracture strain and creep rupture life by a factor of 3.5 and 400, respectively. Detailed microstructure analysis has indicated that serrated grain boundary could distribute strains more evenly than that of straight morphology. The underlying mechanism of deformation with grain boundary serration was further demonstrated by molecular dynamic simulation, which has indicated that serrated grain boundaries could reduce local strain concentration and provide resistance against intergranular cracking. This is the first study to tackle the hot ductility drop issue in a high-entropy alloy fabricated by SLM; it can provide a guideline to develop future high-entropy alloys and design post heat treatment for elevated temperature applications.

2.
Materials (Basel) ; 14(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670916

RESUMO

We studied the effects of the rare earth element yttrium (Y) on the hot cracking and creep properties of Hastelloy-X processed by selective laser melting. We used two different alloys to study hot cracking in Hastelloy-X: one with 0.12 mass% yttrium added and one with no yttrium. Y-free Hastelloy-X exhibited less cracks, mainly due to the segregation of Si, W, and C resulting in SiC- and W6C-type carbides at the grain boundary and interdendritic regions. On the other hand, more cracks formed in the Y-added Hastelloy-X specimen because of segregation of Y, resulting in the formation of yttrium-rich carbide (YC). Post-heat treatment was conducted at 1177 °C for 2 h, followed by air cooling, to obtain good creep properties. We carried out a creep test along the vertical and horizontal directions. Despite having more cracks, the Y-added as-built Hastelloy-X specimen showed longer creep life and ductility than the Hastelloy-X specimen. This was mainly because of the formation of Y2O3 and SiO2 inside the grains. After solution treatment, the Y-added specimen's creep life was eight times longer than that of the Y-free solution-treated specimen. This was mainly because of the maintenance of the columnar grain morphology even after solution treatment. In addition, the formation of M6C carbides, Y2O3, and SiO2 improved creep life. To summarize the effect of Y, Y addition promoted the formation of cracks, which brought about creep anisotropy; however, it improved creep properties through the stabilization of oxygen and the promotion of discrete carbide precipitation, which prohibited the migration and sliding of grain boundary.

3.
Sci Rep ; 10(1): 12163, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699329

RESUMO

A hierarchical microstructure strengthened high entropy superalloy (HESA) with superior cost specific yield strength from room temperature up to 1,023 K is presented. By phase transformation pathway through metastability, HESA possesses a hierarchical microstructure containing a dispersion of nano size disordered FCC particles inside ordered L12 precipitates that are within the FCC matrix. The average tensile yield strength of HESA from room temperature to 1,023 K could be 120 MPa higher than that of advanced single crystal superalloy, while HESA could still exhibit an elongation greater than 20%. Furthermore, the cost specific yield strength of HESA can be 8 times that of some superalloys. A template for lighter, stronger, cheaper, and more ductile high temperature alloy is proposed.

4.
Materials (Basel) ; 11(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895773

RESUMO

The selective laser melting (SLM) process was used to fabricate an Alloy718 specimen. The microstructure and creep properties were characterized in both the as-built and post-processed SLM materials. Post-processing involved several heat treatments and a combination of hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. The experimental results showed that the originally recommended heat treatment process, STA-980 °C, for cast and wrought materials was not effective for SLM-processed specimens. Obvious grain growth structures were obtained in the STA-1180 °C/1 h and STA-1180 °C/4 h specimens. However, the grain size was uneven since heavy distortion or high-density dislocation formed during the SLM process, which would be harmful for the mechanical properties of SLM-fabricated materials. The HIP+ direct aging process was the most effective method among the post-processes to improve the creep behavior at 650 °C. The creep rupture life of the HIP+ direct aging condition approached 800 h since the HIP process had the benefit of being free of pores, thus preventing microcrack nucleation and the formation of a serrated grain boundary.

5.
Sci Rep ; 7(1): 12658, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978946

RESUMO

This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L12 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA