Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 28(9): 2420-2428, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28846385

RESUMO

Biodegradable polymeric nanofibers have emerged as promising candidates for several biomedical applications such as tissue engineering and regenerative medicine. Many of these applications require modification of these nanofibers with small ligands or biomolecules such as peptides and other growth factors, which necessitates functionalization of these materials in mild and benign fashion. This study reports the design, synthesis, and functionalization of such nanofibers and evaluates their application as a cell culture scaffold. Polylactide based copolymers containing furan groups and triethylene glycol (TEG) units as side chains were synthesized using organocatalyzed ring opening polymerization. The furan moiety, an electron rich diene, provides "clickable" handles required for modification of nanofibers since they undergo facile cycloaddition reactions with maleimide-containing small molecules and ligands. The TEG units provide these fibers with hydrophilicity, enhanced biodegradability, and antibiofouling characteristics to minimize nonspecific adsorption. A series of copolymers with varying amounts of TEG units in their side chains were evaluated for fiber formation and antibiofouling characteristics to reveal that an incorporation of 7.5 mol % TEG-based monomer was optimal for nanofibers containing 20 mol % furan units. Facile functionalization of these nanofibers in a selective manner was demonstrated through attachment of a dienophile containing fluorophore, namely, fluorescein maleimide. To show efficient ligand-mediated bioconjugation, nanofibers were functionalized with a maleimide appended biotin, which enabled efficient attachment of the protein, Streptavidin. Importantly, the crucial role played by the TEG-based side chains was evident due to lack of any nonspecific attachment of protein to these nanofibers in the absence of biotin ligand. Furthermore, these nanofibers were conjugated with a cell adhesive cyclic peptide, cRGDfK-maleimide, at room temperature without the need of any additional catalyst. Importantly, comparison of the cell attachment onto nanofibers with and without the peptide demonstrated that fibers appended with the peptides promoted cells to spread nicely and protrude actin filaments for enhanced attachment to the support, whereas the cells on nonfunctionalized nanofibers showed a rounded up morphology with limited cellular spreading.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/citologia , Furanos/química , Nanofibras/química , Poliésteres/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Imobilizadas/citologia , Química Click/métodos , Reação de Cicloadição/métodos , Furanos/síntese química , Camundongos , Nanofibras/ultraestrutura , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Engenharia Tecidual
2.
iScience ; 25(3): 103825, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243220

RESUMO

The thermal transfer between individual body and the surroundings occurs by several paths such as radiation, evaporation, conduction, and convection. Thermal management is related with the heat transfer between the human body and the surroundings, which aims to keep the body temperature in the comfort range either via preserving or via emitting the body heat. The essential duty of clothing is to contribute to the thermal balance of the human body by regulating the heat and moisture transfer. In the case of poorly controlled body heat, health problems such as hyperthermia and heatstroke along with environmental problems due to higher energy consumption can occur. Recently, research has been focused on advanced textiles with novel approaches on materials synthesis and structure design, which can provide thermal comfort together with energy saving. This review article focuses on the innovative strategies basically on the passive textile models for improved thermal conductivity. We will discuss both the fabrication techniques and the inclusion of carbon-based and boron-based fillers to form nano-hybrid textile solutions, which are used to improve the thermal conductivity of the materials.

3.
Materials (Basel) ; 14(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500997

RESUMO

Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications.

4.
J Funct Biomater ; 11(3)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899241

RESUMO

Polyhydroxyalkanoates (PHAs) are a family of bio-based polyesters that have found different biomedical applications. Chitin and lignin, byproducts of fishery and plant biomass, show antimicrobial and anti-inflammatory activity on the nanoscale. Due to their polarities, chitin nanofibril (CN) and nanolignin (NL) can be assembled into micro-complexes, which can be loaded with bioactive factors, such as the glycyrrhetinic acid (GA) and CN-NL/GA (CLA) complexes, and can be used to decorate polymer surfaces. This study aims to develop completely bio-based and bioactive meshes intended for wound healing. Poly(3-hydroxybutyrate)/Poly(3-hydroxyoctanoate-co-3-hydroxydecanoate), P(3HB)/P(3HO-co-3HD) was used to produce films and fiber meshes, to be surface-modified via electrospraying of CN or CLA to reach a uniform distribution. P(3HB)/P(3HO-co-3HD) fibers with desirable size and morphology were successfully prepared and functionalized with CN and CLA using electrospinning and tested in vitro with human keratinocytes. The presence of CN and CLA improved the indirect antimicrobial and anti-inflammatory activity of the electrospun fiber meshes by downregulating the expression of the most important pro-inflammatory cytokines and upregulating human defensin 2 expression. This natural and eco-sustainable mesh is promising in wound healing applications.

5.
ACS Omega ; 4(1): 121-129, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459318

RESUMO

Multifunctionalizable polymeric nanofibers can be tailored for various biomedical applications by selective conjugation of small molecules and bioactive ligands. This study reports the design, synthesis, and application of novel biodegradable polyester-based nanofibers bearing metal-free "clickable" handles. Polylactide-based polymers were synthesized using organo-catalyzed ring-opening polymerization to contain "clickable" chain-end functional groups that specifically react through radical or nucleophilic thiol-ene reactions. A furan-protected maleimide-containing hydroxyl-bearing initiator yielded polymers containing strained oxanorbornene unit at their chain end. In addition, postpolymerization thermal treatment provides maleimide end group-containing polymers. Solution electrospinning method was utilized to obtain bead-free nanofibers. Efficient conjugation on these nanofibers was demonstrated using metal-free conjugation reactions. It was observed that polylactide nanofibers undergo extensive biofouling, which limits their possible utilization for specific biomolecular immobilization. To alleviate this problem, polymers were modified to contain two orthogonally reactive functional groups, namely, the oxanorbornene unit and an azide group at their chain ends. The former reactive handle was used for conjugation of poly(ethylene glycol) chains to impart hydrophilicity and thus an antibiofouling ability, whereas the azide group undergoes strain-promoted azide-alkyne cycloaddition to install a protein-binding ligand such as biotin. These nanofibers were able to specifically immobilize the protein streptavidin with minimal nonspecific adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA