Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125886

RESUMO

The elimination of ground reaction force (support withdrawal) vastly affects slow postural muscles in terms of their regulation and structure. One of the effects of support withdrawal in this study was an immediate postural muscle inactivation, followed by the daily gradual development of spontaneous activity of the slow postural soleus muscle in response to rat hindlimb suspension to mimic space flight. The origin of this activity is somewhat akin to muscle spasticity after spinal cord injuries and is the result of KCC2 content decline in the spinal cord's motor neurons. However, the physiological consequences of unloading-induced spontaneous activity remain unexplored. We have conducted an experiment with the administration of a highly specific KCC2 activator during 7-day unloading. For this experiment, 32 male Wistar rats were divided into 4 groups: C+placebo, C+CLP-290 (100 mg/kg b w), 7HS+placebo, and 7HS+CLP-hindlimb-suspended group with CLP-290 administration (100 mg/kg b w). The soleus muscles of the animals were dissected and analyzed for several proteostasis- and metabolism-related parameters. CLP-290 administration to the unloaded animals led to the upregulation of AMPK downstream (p-ACC) and mTOR targets (p-p70S6k and p-4E-BP) and an enhanced PGC1alpha decrease vs. the 7HS group, but neither prevented nor enhanced atrophy of the soleus muscle or myofiber CSA.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Ratos Wistar , Transdução de Sinais , Animais , Elevação dos Membros Posteriores/efeitos adversos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Ratos , Simportadores/metabolismo , Simportadores/genética
2.
Arch Biochem Biophys ; 718: 109150, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35157854

RESUMO

Support afferentation in recent years was shown to be a key physiological stimulus controlling postural muscle function, structure and phenotype. Lack of support afferentation under various types of muscle disuse leads to a decline of size and percentage of slow-type fatigue-resistant muscle fibers, which can negatively affect muscle performance and life quality. In this study we simulated support afferentation during rat hindlimb unloading and investigated its effect on postural soleus muscle functional properties and signaling. Plantar mechanical stimulation prevented the unloading-induced muscle fatigue increase, maintained the level of mitochondrial DNA copy number and the percent of slow-type muscle fibers and partially prevented the increase of CpG methylation in pgc 1α promoter region and decline in myonuclear content of several transcriptional activators of slow myosin and PGC1 α expression. So, support afferentation under hindlimb suspension leads to maintaining of a slow-twitch oxidative and fatigue-resistant soleus muscle fibers phenotype.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Animais , Elevação dos Membros Posteriores/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573052

RESUMO

It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.


Assuntos
Pé/fisiologia , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Óxido Nítrico/metabolismo , Miosina não Muscular Tipo IIA/genética , Animais , Fenômenos Biomecânicos , Regulação para Baixo , Epigênese Genética , Elevação dos Membros Posteriores , Masculino , Ratos Wistar , Transdução de Sinais , Simulação de Ausência de Peso
4.
Sci Rep ; 11(1): 9806, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963253

RESUMO

Both research conducted under microgravity conditions and ground-based space analog studies have shown that air pump-based plantar mechanical stimulation (PMS) of cutaneous mechanoreceptors of the sole of the foot is able to increase neuromuscular activity in the musculature of the lower limbs. This type of stimulation is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. The aim of the present study was to evaluate the effects of PMS on anabolic signaling pathways in rat soleus muscle following 7-day hindlimb suspension (HS) and to elucidate if the effects of PMS on anabolic processes would be NO-dependent. The soles of the feet were stimulated with a frequency of 1-s inflation/1-s deflation with a total of 20 min followed by 10 min rest. This cycle was repeated for 4 h each day. We observed a decrease in the soleus muscle mass after 7-day HS, which was not prevented by PMS. We also observed a decrease in slow-type fiber cross-sectional area (CSA) by 56%, which significantly exceeded a decrease (-22%) in fast-type fiber CSA. PMS prevented a reduction in slow-twitch fiber CSA, but had no effect on fast-twitch fiber CSA. PMS prevented a 63% decrease in protein synthesis after 7-day HS as well as changes in several key anabolic signaling regulators, such as p70S6k, 4E-BP1, GSK3ß, eEF-2, p90RSK. PMS also prevented a decrease in the markers of translational capacity (18S and 28S rRNA, c-myc, 45S pre-rRNA). Some effects of PMS on anabolic signaling were altered due to NO-synthase inhibitor (L-NAME) administration. Thus, PMS is able to partially prevent atrophic processes in rat soleus muscle during 7-day HS, affecting slow-type muscle fibers. This effect is mediated by alterations in anabolic signaling pathways and may depend on NO-synthase activity.


Assuntos
Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/biossíntese , Atrofia Muscular/metabolismo , Óxido Nítrico/metabolismo , Biossíntese de Proteínas , Animais , Masculino , Ratos , Ratos Wistar
5.
Life (Basel) ; 11(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34833037

RESUMO

A gradual increase in rat soleus muscle electromyographic (EMG) activity is known to occur after 3-4 days of hindlimb suspension/unloading (HS). The physiological significance and mechanisms of such activity of motoneurons under unloading conditions are currently unclear. Since hyperactivity of motoneurons and muscle spasticity after spinal cord injury are associated with KCC2 downregulation, we hypothesized that a decrease in potassium (K+)/chloride (Cl-) co-transporter 2 (KCC2) in motoneurons would be responsible for an increase in soleus muscle EMG activity during HS. We aimed to investigate the effect of prochlorperazine (KCC2 activator) on the electrical activity of rat soleus muscle under HS. Wistar rats were divided into the following groups: (1) vivarium control (C), (2) 7-day HS group (7HS) and (3) 7-day HS group plus intraperitoneal injections of prochlorperazine (10 mg/kg, daily) (7HS + P). Expression of proteins in the motoneurons of the lumbar spinal cord was determined by Western blotting. An electromyogram of the rat soleus muscle was recorded using intramuscular electrodes. KCC2 content after 7-day HS significantly decreased by 34% relative to the control group. HS-induced decrease in KCC2 protein content was prevented by prochlorperazine administration. HS also induced a significant 80% decrease in KCC2 Ser940 phosphorylation; however prochlorperazine did not affect KCC2 phosphorylation. The treatment of the rats with prochlorperazine prevented a HS-induced increase in Na(+)/K(+)/(Cl-) co-transporter 1 (KCC2 antagonist) protein content. In parallel with the restoration of KCC2 content, prochlorperazine administration during HS partially prevented an increase in the soleus muscle tonic EMG activity. Thus, prochlorperazine administration during 7-day HS prevents a decrease in KCC2 protein expression in motoneurons and significantly reduces the level of HS-induced soleus muscle electrical activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA