Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14267-14277, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717595

RESUMO

Converting CO2 to synthetic hydrocarbon fuels is of increasing interest. In light of progress in electrified CO2 to ethylene, we explored routes to dimerize to 1-butene, an olefin that can serve as a building block to ethylene longer-chain alkanes. With goal of selective and active dimerization, we investigate a series of metal-organic frameworks having bimetallic catalytic sites. We find that the tunable pore structure enables optimization of selectivity and that periodic pore channels enhance activity. In a tandem system for the conversion of CO2 to 1-C4H8, wherein the outlet cathodic gas from a CO2-to-C2H4 electrolyzer is fed directly (via a dehumidification stage) into the C2H4 dimerizer, we study the highest-performing MOF found herein: M' = Ru and M″ = Ni in the bimetallic two-dimensional M'2(OAc)4M″(CN)4 MOF. We report a 1-C4H8 production rate of 1.3 mol gcat-1 h-1 and a C2H4 conversion of 97%. From these experimental data, we project an estimated cradle-to-gate carbon intensity of -2.1 kg-CO2e/kg-1-C4H8 when CO2 is supplied from direct air capture and when the required energy is supplied by electricity having the carbon intensity of wind.

2.
J Am Chem Soc ; 145(9): 5074-5082, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827417

RESUMO

Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.

3.
J Am Chem Soc ; 144(15): 6813-6820, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35412323

RESUMO

Mixed-matrix membranes (MMMs) based on luminescent metal-organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of high-speed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most well-established color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.

4.
J Am Chem Soc ; 143(45): 19178-19186, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739750

RESUMO

Ammonium ions (NH4+), as non-metallic charge carriers, have spurred great research interest in the realm of aqueous batteries. Unfortunately, most inorganic host materials used in these batteries are still limited by the sluggish diffusion kinetics. Here, we report a unique hydrogen bond chemistry to employ covalent organic frameworks (COFs) for NH4+ ion storage, which achieves a high capacity of 220.4 mAh g-1 at a current density of 0.5 A g-1. Combining the theoretical simulation and materials analysis, a universal mechanism for the reaction of nitrogen and oxygen bridged by hydrogen bonds is revealed. In addition, we explain the solvation behavior of NH4+, leading to a relationship between redox potential and desolvation energy barrier. This work provides a new insight into NH4+ ion storage in host materials based on hydrogen bond chemistry. This mechanism can be leveraged to design and develop COFs for electrochemical energy storage.

5.
Nano Lett ; 18(11): 7350-7357, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265545

RESUMO

Magic-sized clusters represent materials with unique properties at the border between molecules and solids and provide important insights into the nanocrystal formation process. However, synthesis, doping, and especially structural characterization become more and more challenging with decreasing cluster size. Herein, we report the successful introduction of Co2+ ions into extremely small-sized CdSe clusters with the intention of using internal ligand field transitions to obtain structural insights. Despite the huge mismatch between the radii of Cd2+ and Co2+ ions (>21%), CdSe clusters can be effectively synthesized with a high Co2+ doping concentration of ∼10%. Optical spectroscopy and mass spectrometry suggest that one or two Co2+ ions are substitutionally embedded into (CdSe)13 clusters, which is known as one of the smallest CdSe clusters. Using magnetic circular dichroism spectroscopy on the intrinsic ligand field transitions between the different 3d orbitals of the transition metal dopants, we demonstrate that the Co2+ dopants are embedded on pseudotetrahedral selenium coordinated sites despite the limited number of atoms in the clusters. A significant shortening of Co-Se bond lengths compared to bulk or nanocrystals is observed, which results in the metastability of Co2+ doping. Our results not only extend the doping chemistry of magic-sized semiconductor nanoclusters, but also suggest an effective method to characterize the local structure of these extremely small-sized clusters.

6.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218825

RESUMO

There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm-2 and a Tafel slope of 120 mV dec-1 with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis.

7.
Adv Mater ; : e2409354, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344865

RESUMO

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH4 + ions can cause structural damage and material dissolution during battery operation. To address this challenge, an Aza-based covalent organic framework (COF) material is introduced as an anode for aqueous ammonium ion batteries. This material exhibits superior ammonium storage capabilities compared to existing anode materials. It operates effectively within a negative potential range of 0.3 to‒1.0 V versus SCE, achieves high capacity even at elevated current densities (≈74 mAh g-1 at 10 A g-1), and demonstrates exceptional stability, retaining a capacity over 20 000 cycles at 1.0 A g-1. Furthermore, by pairing this COF anode with a Prussian blue cathode, an ammonium rocking-chair full battery is developedd that maintains 89% capacity over 20 000 cycles at 1.0 A g-1, surpassing all previously reported ammonium ion full batteries. This study offers insights for the design of future anodes for ammonium ion batteries and holds promise for high-energy storage solutions.

8.
ACS Nano ; 17(14): 13961-13973, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428125

RESUMO

Proton activity in electrolytes plays a crucial role in deciding the electrochemical performance of aqueous batteries. On the one hand, it can influence the capacity and rate performance of host materials because of the high redox activity of protons. On the other hand, it can also cause a severe hydrogen evolution reaction (HER) when the protons are aggregated near the electrode/electrolyte interface. The HER dramatically limits the potential window and the cycling stability of the electrodes. Therefore, it is critical to clarify the impact of electrolyte proton activity on the battery macro-electrochemical performance. In this work, using an aza-based covalent organic framework (COF) as a representative host material, we studied the effect of electrolyte proton activity on the potential window, storage capacity, rate performance, and cycle stability in various electrolytes. A tradeoff relationship between proton redox reactions and the HER in the COF host is revealed by utilizing various in situ and ex situ characterizations. Moreover, the origin of proton activity in near-neutral electrolytes is discussed in detail and is confirmed to be related to the hydrated water molecules in the first solvation shell. A detailed analysis of the charge storage process in the COFs is presented. These understandings can be of importance for utilizing the electrolyte proton activity to build high-energy aqueous batteries.

9.
Chemistry ; 18(44): 13994-9, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23008230

RESUMO

Mild-mannered catalyst: a novel procedure to load a MoS(2) co-catalyst onto the surface of silicon under mild-conditions (room temperature, atmospheric pressure, aqueous solution) by a photo-assisted electrodeposition process employing commercially available precursors is reported. The obtained Si-NW@MoS(2) photocathode showed similar catalytic activity for light-driven H(2) generation compared with a Si-NW@Pt photocathode.

10.
Phys Chem Chem Phys ; 14(13): 4614-9, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354387

RESUMO

The enhanced electron field emission (EFE) properties of high aspect ratio, vertically aligned SiNW-ZnO core-shell arrays are presented. These core-shell arrays are prepared by a thin, controlled, highly crystalline and conformal coating of zinc oxide as shell using the plasma assisted-atomic layer deposition (PA-ALD) route on vertically aligned silicon nanowire arrays core. The core-shell nanostuctures are confirmed by HRTEM imaging along with the individual elemental mapping demonstrating the conformal deposition of 10 nm ZnO on the SiNWs. EFE properties of va-SiNW-ZnO core-shell arrays showed a high emission current density of 51 µA cm(-2) and a low turn on field of 7.6 V µm(-1) (defined at a current density of 1 µA cm(-2)) compared to the 3.2 µA cm(-2) emission current density and 9.1 V µm(-1) turn on field for SiNWs. The field enhancement factor (ß) of 4227 for the devices demonstrates that these core-shell nanowire arrays are excellent field-emitters. Such an enhancement in the field emission originates from the details of the band structure of this peculiar material combination resulting in good electron transport from SiNW to ZnO as evident from the band diagram of the core-shell material. This is further supported by the conducting AFM studies where lowering in threshold voltage by 1 eV confirms the role of ZnO coating in the enhancement of the emission characteristics.


Assuntos
Nanofios/química , Silício/química , Óxido de Zinco/química , Condutividade Elétrica , Elétrons , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 13(24): 29041-29047, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34105948

RESUMO

MOF-based mixed-matrix membranes (MMMs) prepared using standard routes often exhibit poor adhesion between polymers and MOFs. Herein, we report an unprecedented systematic exploration on polymer functionalization as the key to achieving defect-free MMMs. As a case study, we explored computationally MMMs based on the combination of the prototypical UiO-66(Zr) MOF with polymer of intrinsic porosity-1 (PIM-1) functionalized with various groups including amidoxime, tetrazole, and N-((2-ethanolamino)ethyl)carboxamide. Distinctly, the amidoxime-derivative PIM-1/UiO-66(Zr) MMM was predicted to express the desired enhanced MOF/polymer interfacial interactions and thus subsequently prepared and evaluated experimentally. Prominently, high-resolution transmission electron microscopy confirmed optimal adhesion between the two components in contrast to the nanometer-sized voids/defects shown by the pristine PIM-1/UiO-66(Zr) MMM. Notably, single-gas permeation measurements further corroborated the need of optimal MOF/polymer adhesion in order to effectively enable the MOF to play a role in the gas transport of the resulting MMM.

12.
Adv Mater ; 33(39): e2103617, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365688

RESUMO

Covalent organic frameworks (COFs) are potentially promising electrode materials for electrochemical charge storage applications thanks to their pre-designable reticular chemistry with atomic precision, allowing precise control of pore size, redox-active functional moieties, and stable covalent frameworks. However, studies on the mechanistic and practical aspects of their zinc-ion storage behavior are still limited. In this study, a strategy to enhance the electrochemical performance of COF cathodes in zinc-ion batteries (ZIBs) by introducing the quinone group into 1,4,5,8,9,12-hexaazatriphenylene-based COFs is reported. Electrochemical characterization demonstrates that the introduction of the quinone groups in the COF significantly pushes up the Zn2+ storage capability against H+ and elevates the average (dis-)charge potential in aqueous ZIBs. Computational and experimental analysis further reveals the favorable redox-active sites that host Zn2+ /H+ in COF electrodes and the root cause for the enhanced electrochemical performance. This work demonstrates that molecular engineering of the COF structure is an effective approach to achieve practical charge storage performance.

13.
Lab Chip ; 10(15): 1902-6, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20532407

RESUMO

A novel method is developed for template assisted fabrication of a regular assembly of microcavity arrays. Simple micropatterns on PDMS mold are used to create complex geometries via solvent vapor back pressure in a biodegradable polymer. Cavities are in turn replicated in complimentary PDMS mushroom like microstructures.

14.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29068560

RESUMO

Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m-2 , top: ≈30 000 cd m-2 , total: ≈73 000 cd m-2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in.-1 ) shows the potential of the full-color transparent display.

15.
Adv Mater ; 28(42): 9326-9332, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27571382

RESUMO

Large-scale colloidal synthesis and integration of uniform-sized molybdenum disulfide (MoS2 ) nanosheets for a flexible resistive random access memory (RRAM) array are presented. RRAM using MoS2 nanosheets shows a ≈10 000 times higher on/off ratio than that based on exfoliated MoS2 . The good uniformity of the MoS2 nanosheets allows wafer-scale system integration of the RRAM array with pressure sensors and quantum-dot light-emitting diodes.

16.
Chem Commun (Camb) ; 47(27): 7785-7, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21637892

RESUMO

A novel, catalyst-free strategy for the direct synthesis of vertically aligned silicon nanowire-carbon nanotube (SiNW-CNT) heterojunction arrays is presented. Such a heterojunction with the junction area in the nanoscale displays enhanced field emission characteristics at low turn-on field, with a nearly three times increase in the field enhancement factor.

17.
Colloids Surf B Biointerfaces ; 83(1): 16-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109409

RESUMO

A solution-based approach to the synthesis of silver (Ag) nanoparticles by chemical reduction of AgNO(3) in a graphene oxide (GrO) suspension is demonstrated. X-ray diffraction and transmission electron microscopy indicate that the Ag nanoparticles, of size range 5-25nm, were decorated on the GrO sheets. The size and shape of the Ag nanoparticles are dependent on the concentration of the AgNO(3) solution. Antimicrobial activity of such hybrids materials is investigated against the Gram negative bacteria Escherichia coli and Pseudomonous aeruginosa. The bacterial growth kinetics was monitored in nutrient broth supplemented with the Ag nanoparticle-GrO suspension at different conditions. It was observed that P. aeruginosa is comparatively more sensitive to the Ag nanoparticle-GrO suspension.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Grafite/química , Nanopartículas Metálicas/química , Óxidos/química , Prata/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Espectrofotometria Ultravioleta , Suspensões , Difração de Raios X
18.
Chem Commun (Camb) ; 46(30): 5590-2, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20574576

RESUMO

A novel high aspect ratio material which can simultaneously display multiple functions such as proton and electron conductivity and electrocatalytic activity has been developed by incorporating both platinum nanoparticles and phosphoric acid doped polybenzimidazole along the inner and outer surfaces of a hollow carbon nanofiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA