RESUMO
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG , Humanos , Imunidade , VacinaçãoRESUMO
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Assuntos
Infecções Respiratórias , Vacinas de mRNA , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia , Desenvolvimento de Vacinas , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Vacinas contra COVID-19/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologiaRESUMO
BACKGROUND: We sought to identify potential antigens for discerning between humoral responses elicited after vaccination with CoronaVac (a severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] inactivated vaccine), natural infection, or breakthrough infection. METHODS: Serum samples obtained from volunteers immunized with CoronaVac (2 and 3 doses), breakthrough case patients, and from convalescent individuals were analyzed to determine the immunoglobulin (Ig) G responses against 3 structural and 8 nonstructural SARS-CoV-2 antigens. RESULTS: Immunization with CoronaVac induced higher levels of antibodies against the viral membrane (M) protein compared with convalescent subjects both after primary vaccination and after a booster dose. Individuals receiving a booster dose displayed equivalent levels of IgG antibodies against the nucleocapsid (N) protein, similar to convalescent subjects. Breakthrough case patients produced the highest antibody levels against the N and M proteins. Antibodies against nonstructural viral proteins were present in >50% of the convalescent subjects. CONCLUSIONS: Vaccinated individuals elicited a different humoral response compared to convalescent subjects. The analysis of particular SARS-CoV-2 antigens could be used as biomarkers for determining infection in subjects previously vaccinated with CoronaVac.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vírion , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes , VacinaçãoRESUMO
Recently, it has been described that innate immune cells such as monocytes, macrophages, and natural killer cells can develop a non-specific immune response induced by different stimuli, including lipopolysaccharides, Mycobacterium bovis Bacillus Calmette-Guérin, and oxidized low-density lipoprotein. This non-specific immune response has been named "trained immunity," whose mechanism is essential for host defense and vaccine response, promoting better infection control. However, limited information about trained immunity in other non-infectious diseases, such as autoimmune illness, has been reported. The complexity of autoimmune pathology arises from dysfunctions in the innate and adaptive immune systems, triggering different clinical outcomes depending on the disease. Nevertheless, T and B cell function dysregulation is the most common characteristic associated with autoimmunity by promoting the escape from central and peripheral tolerance. Despite the importance of adaptative immunity to autoimmune diseases, the innate immune system also plays a prominent and understudied role in these pathologies. Accordingly, epigenetic and metabolic changes associated with innate immune cells that undergo a trained process are possible new therapeutic targets for autoimmune diseases. Even so, trained immunity can be beneficial or harmful in autoimmune diseases depending on several factors associated with the stimuli. Here, we reviewed the role of trained immunity over the innate immune system and the possible role of these changes in common autoimmune diseases, including Systemic Lupus Erythematosus, Rheumatoid Arthritis, Multiple Sclerosis, and Type 1 Diabetes.
Assuntos
Doenças Autoimunes , Imunidade Inata , Humanos , Autoimunidade , Imunidade Treinada , Macrófagos , Imunidade AdaptativaRESUMO
Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.
RESUMO
Adequate iodine nutrition is fundamental for all humans and is critical during pregnancy and lactation due to iodine forms part of the structure of thyroid hormones (THs) and it is required for THs function. Iodine is a scarce micronutrient that must be obtained from the diet. Sufficient iodine can be found in the nature from seafood and given it is not frequently consumed by Chileans, public health policies state that table salt in Chile must be iodized. Health plans must be monitored to determine if the intake of iodine is being appropriated and the population has not fallen in deficiency or excess. The aim of this work was to evaluate iodine intake in 26 women at the third trimester of pregnancy. Pregnant women are resident from El Bosque a low-income County located in Santiago de Chile. These Chilean pregnant women were recruited by nutritionist at the Centros de Salud familiar (CESFAM). A 24 h dietary recall (24 h-DR) was applied to them to evaluate iodine intake. Samples of urine and blood were taken by health professionals to analyze parameters of thyroid function and to measure urine iodine concentration (UIC). The survey analysis showed that the iodine consumption in these pregnant women derived mainly from salt, bread and milk and not from seafood. The survey analysis indicated that iodine intake was above the requirements for pregnant women. However, the average UIC indicated that iodine intake was adequate, suggesting the need to find a better parameter to determine iodine intake in pregnant women.
Assuntos
Iodo , Terceiro Trimestre da Gravidez , Humanos , Feminino , Gravidez , Iodo/sangue , Iodo/urina , Terceiro Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/urina , Ingestão de Alimentos , Chile , Estudos de Coortes , Pobreza , Glândula Tireoide/fisiologiaRESUMO
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Assuntos
Doenças Transmissíveis , Células T Matadoras Naturais , Citocinas , Humanos , Imunidade InataRESUMO
BACKGROUND: Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients. METHODS: This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8-12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti-SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined. RESULTS: NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both Pâ <â .001) in the solid organ transplant group, 41.5% and 19.2% (both Pâ <â .0001) in the autoimmune rheumatic diseases group, 43.3% (Pâ <â .001) and 21.4% (P<.01 or Pâ =â .001) in the cancer with solid tumors group, 45.5% and 28.7% (both Pâ <â .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; Pâ <â .0001), rheumatic diseases (61%; Pâ <â .001), and HIV groups (70.9%; Pâ =â .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups. CONCLUSIONS: Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients. CLINICAL TRIALS REGISTRATION: NCT04888793.
Assuntos
COVID-19 , Doenças Reumáticas , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Chile/epidemiologia , Humanos , Imunidade , Hospedeiro Imunocomprometido , Estudos Prospectivos , SARS-CoV-2 , Vacinas de Produtos InativadosRESUMO
BACKGROUND: The development of effective vaccines against coronavirus disease 2019 is a global priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine with promising safety and immunogenicity profiles. This article reports safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 years in a phase 3 clinical trial. METHODS: Volunteers randomly received 2 doses of CoronaVac or placebo, separated by 2 weeks. A total of 434 volunteers were enrolled, 397 aged 18-59 years and 37 aged ≥60 years. Solicited and unsolicited adverse reactions were registered from all volunteers. Blood samples were obtained from a subset of volunteers and analyzed for humoral and cellular measures of immunogenicity. RESULTS: The primary adverse reaction in the 434 volunteers was pain at the injection site, with a higher incidence in the vaccine than in the placebo arm. Adverse reactions observed were mostly mild and local. No severe adverse events were reported. The humoral evaluation was performed on 81 volunteers. Seroconversion rates for specific anti-S1-receptor binding domain (RBD) immunoglobulin G (IgG) were 82.22% and 84.44% in the 18-59 year age group and 62.69% and 70.37% in the ≥60 year age group, 2 and 4 weeks after the second dose, respectively. A significant increase in circulating neutralizing antibodies was detected 2 and 4 weeks after the second dose. The cellular evaluation was performed on 47 volunteers. We detected a significant induction of T-cell responses characterized by the secretion of interferon-γ (IFN-γ) upon stimulation with Mega Pools of peptides from SARS-CoV-2. CONCLUSIONS: Immunization with CoronaVac in a 0-14 schedule in Chilean adults aged ≥18 years is safe, induces anti-S1-RBD IgG with neutralizing capacity, activates T cells, and promotes the secretion of IFN-γ upon stimulation with SARS-CoV-2 antigens.
Assuntos
COVID-19 , Vacinas Virais , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Chile , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Imunoglobulina G , Pessoa de Meia-Idade , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Adulto JovemRESUMO
Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.
Assuntos
Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Vírus , Humanos , Lactente , Criança , Infecções por Vírus Respiratório Sincicial/diagnóstico , Interleucina-33 , Interleucina-3 , Interleucina-8 , Vírus Sinciciais Respiratórios , Citocinas , Índice de Gravidade de Doença , Biomarcadores , RNA MensageiroRESUMO
Adequate iodine nutrition is crucial for all mammals by playing his starring role as a component of thyroid hormones, which are key regulators of cellular processes for life such as differentiation, growth, function, and metabolism. Deficiency or excess of iodine in the diet are worldwide highly frequent conditions that are responsible of health problems like hypothyroidism, hypothyroxinemia, goiter, thyroiditis, hyperthyroidism, and autoimmune thyroid diseases among others. The incorporation of iodine in salt or other nutrients resolved the consequences of severe iodine deficiency like goiter, cretinism. However, this strategy in several countries led to other ailments like Hashimoto autoimmune thyroiditis, hyperthyroidism, and hypothyroidism. The goal of this review is to analyze and discuss the different aspects of iodine nutrition for human health comprising its biological role through thyroid hormones, pathogen control, and the regulation of the intestinal microbiota.
Assuntos
Bócio , Hipertireoidismo , Hipotireoidismo , Iodo , Animais , Humanos , MicronutrientesRESUMO
Cutaneous lupus erythematosus (CLE) is an autoimmune disorder like systemic lupus erythematosus (SLE). Both SLE and CLE characterize autoantibody secretion and immune cell recruitment. In particular, CLE can be divided into three more frequent types, varying in the severity of the skin lesions they present. The role of type I IFN was shown to be one of the leading causes of the development of this pathology in the skin. Different treatments have been developed and tested against these different variants of CLE to decrease the increasing levels of CLE in humans. In this article, a literature revision discussing the similarities between SLE and CLE is carried out. In addition, new advances in understanding the development of CLE and the leading treatments being evaluated in animal models and clinical trials are reviewed.
Assuntos
Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Sistêmico , Animais , Humanos , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Cutâneo/terapia , Pele/patologiaRESUMO
Neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), NT-4, and NT-5, are proteins involved in several important functions of the central nervous system. The activation of the signaling pathways of these neurotrophins, or even by their immature form, pro-neurotrophins, starts with their recognition by cellular receptors, such as tropomyosin receptor kinase (Trk) and 75 kD NT receptors (p75NTR). The Trk receptor is considered to have a high affinity for attachment to specific neurotrophins, while the p75NTR receptor has less affinity for attachment with neurotrophins. The correct functioning of these signaling pathways contributes to proper brain development, neuronal survival, and synaptic plasticity. Unbalanced levels of neurotrophins and pro-neurotrophins have been associated with neurological disorders, illustrating the importance of these molecules in the central nervous system. Furthermore, reports have indicated that viruses can alter the normal levels of neurotrophins by interfering with their signaling pathways. This work discusses the importance of neurotrophins in the central nervous system, their signaling pathways, and how viruses can affect them.
Assuntos
Transdução de Sinais , Viroses , Sistema Nervoso Central , Humanos , Plasticidade Neuronal , Receptores de Superfície Celular , Transdução de Sinais/fisiologiaRESUMO
Multiple sclerosis (MS) is an autoimmune disease characterized by a robust inflammatory response against myelin sheath antigens, which causes astrocyte and microglial activation and demyelination of the central nervous system (CNS). Multiple genetic predispositions and environmental factors are known to influence the immune response in autoimmune diseases, such as MS, and in the experimental autoimmune encephalomyelitis (EAE) model. Although the predisposition to suffer from MS seems to be a multifactorial process, a highly sensitive period is pregnancy due to factors that alter the development and differentiation of the CNS and the immune system, which increases the offspring's susceptibility to develop MS. In this regard, there is evidence that thyroid hormone deficiency during gestation, such as hypothyroidism or hypothyroxinemia, may increase susceptibility to autoimmune diseases such as MS. In this review, we discuss the relevance of the gestational period for the development of MS in adulthood.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Sistema Nervoso Central , Feminino , Esclerose Múltipla/etiologia , Bainha de Mielina , Gravidez , Fatores de RiscoRESUMO
Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.
Assuntos
Infecções por Hantavirus/imunologia , Orthohantavírus/fisiologia , Vacinas Virais/imunologia , Animais , Parada Cardíaca , Febre Hemorrágica com Síndrome Renal , Humanos , Imunidade Celular , Camundongos , Zoonoses ViraisRESUMO
Pathogenicity island excision is a phenomenon that occurs in several Salmonella enterica serovars and other members of the family Enterobacteriaceae. ROD21 is an excisable pathogenicity island found in the chromosome of S. Enteritidis, S. Dublin and S. Typhi among others, which contain several genes encoding virulence-associated proteins. Excision of ROD21 may play a role in the ability of S. Enteritidis to cause a systemic infection in mice. Our previous studies have shown that Salmonella strains unable to excise ROD21 display a reduced ability to colonize the liver and spleen. In this work, we determined the kinetics of ROD21 excision in vivo in C57BL/6 mice and its effect on virulence. We quantified bacterial burden and excision frequency in different portions of the digestive tract and internal organs throughout the infection. We observed that the frequency of ROD21 excision was significantly increased in the bacterial population colonizing mesenteric lymph nodes at early stages of the infective cycle, before 48 hours post-infection. In contrast, excision frequency remained very low in the liver and spleen at these stages. Interestingly, excision increased drastically after 48 h post infection, when intestinal re-infection and mortality begun. Moreover, we observed that the inability to excise ROD21 had a negative effect on S. Enteritidis capacity to translocate from the intestine to deeper organs, which correlates with an abnormal transcription of invA in the S. Enteritidis strain unable to excise ROD21. These results suggest that excision of ROD21 is a genetic mechanism required by S. Enteritidis to produce a successful invasion of the intestinal epithelium, a step required to generate systemic infection in mice.
Assuntos
Ilhas Genômicas/genética , Mucosa Intestinal/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , Animais , Camundongos , Camundongos Endogâmicos C57BL , Virulência/genéticaRESUMO
The human respiratory syncytial virus (hRSV) is the most common infectious agent that affects children before two years of age. hRSV outbreaks cause a significant increase in hospitalizations during the winter season associated with bronchiolitis and pneumonia. Recently, neurologic alterations have been associated with hRSV infection in children, which include seizures, central apnea, and encephalopathy. Also, hRSV RNA has been detected in cerebrospinal fluids (CSF) from patients with neurological symptoms after hRSV infection. Additionally, previous studies have shown that hRSV can be detected in the lungs and brains of mice exposed to the virus, yet the potential effects of hRSV infection within the central nervous system (CNS) remain unknown. Here, using a murine model for hRSV infection, we show a significant behavior alteration in these animals, up to two months after the virus exposure, as shown in marble-burying tests. hRSV infection also produced the expression of cytokines within the brain, such as IL-4, IL-10, and CCL2. We found that hRSV infection alters the permeability of the blood-brain barrier (BBB) in mice, allowing the trespassing of macromolecules and leading to increased infiltration of immune cells into the CNS together with an increased expression of pro-inflammatory cytokines in the brain. Finally, we show that hRSV infects murine astrocytes both, in vitro and in vivo. We identified the presence of hRSV in the brain cortex where it colocalizes with vWF, MAP-2, Iba-1, and GFAP, which are considered markers for endothelial cells, neurons, microglia, and astrocyte, respectively. hRSV-infected murine astrocytes displayed increased production of nitric oxide (NO) and TNF-α. Our results suggest that hRSV infection alters the BBB permeability to macromolecules and immune cells and induces CNS inflammation, which can contribute to the behavioral alterations shown by infected mice. A better understanding of the neuropathy caused by hRSV could help to reduce the potential detrimental effects on the CNS in hRSV-infected patients.
Assuntos
Vírus Sincicial Respiratório Humano , Animais , Astrócitos , Barreira Hematoencefálica , Sistema Nervoso Central , Células Endoteliais , Humanos , Inflamação , Pulmão , Camundongos , PermeabilidadeRESUMO
BACKGROUND: Urushiols are pro-electrophilic haptens that cause severe contact dermatitis mediated by CD8+ effector T-cells and downregulated by CD4+ T-cells. However, the molecular mechanism by which urushiols stimulate innate immunity in the initial stages of this allergic reaction is poorly understood. Here we explore the sub-cellular mechanisms by which urushiols initiate the allergic response. RESULTS: Electron microscopy observations of mouse ears exposed to litreol (3-n-pentadecyl-10-enyl-catechol]) showed keratinocytes containing swollen mitochondria with round electron-dense inclusion bodies in the matrix. Biochemical analyses of sub-mitochondrial fractions revealed an inhibitory effect of urushiols on electron flow through the mitochondrial respiratory chain, which requires both the aliphatic and catecholic moieties of these allergens. Moreover, urushiols extracted from poison ivy/oak (mixtures of 3-n-pentadecyl-8,11,13 enyl/3-n-heptadecyl-8,11 enyl catechol) exerted a higher inhibitory effect on mitochondrial respiration than did pentadecyl catechol or litreol, indicating that the higher number of unsaturations in the aliphatic chain, stronger the allergenicity of urushiols. Furthermore, the analysis of radioactive proteins isolated from mitochondria incubated with 3H-litreol, indicated that this urushiol was bound to cytochrome c1. According to the proximity of cytochromes c1 and b, functional evidence indicated the site of electron flow inhibition was within complex III, in between cytochromes bL (cyt b566) and bH (cyt b562). CONCLUSION: Our data provide functional and molecular evidence indicating that the interruption of the mitochondrial electron transport chain constitutes an important mechanism by which urushiols initiates the allergic response. Thus, mitochondria may constitute a source of cellular targets for generating neoantigens involved in the T-cell mediated allergy induced by urushiols.
Assuntos
Alérgenos , Citocromos b , Animais , Catecóis , Citocromos c , Citocromos c1 , Transporte de Elétrons , Camundongos , MitocôndriasRESUMO
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5'-C-phosphate-G-3' (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Assuntos
Doenças Autoimunes/patologia , Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Código das Histonas , Animais , Doenças Autoimunes/etiologia , HumanosRESUMO
Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.