Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circulation ; 144(7): 539-555, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34111939

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Assuntos
Técnicas de Transferência de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Nanopartículas , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Alvéolos Pulmonares/anormalidades , Fator de Transcrição STAT3/genética , Remodelação das Vias Aéreas/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ecocardiografia , Fibrose , Fatores de Transcrição Forkhead/deficiência , Terapia Genética , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/diagnóstico , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Camundongos , Camundongos Transgênicos , Densidade Microvascular/genética , Miofibroblastos/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Fator de Transcrição STAT3/administração & dosagem , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Remodelação Vascular/genética
2.
Am J Respir Crit Care Med ; 203(4): 471-483, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877203

RESUMO

Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Pneumopatias/terapia , Pulmão/crescimento & desenvolvimento , Glândula Tireoide/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/genética , Humanos , Camundongos , Modelos Animais
3.
Dev Dyn ; 250(7): 1001-1020, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33428297

RESUMO

BACKGROUND: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS: While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored ß-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS: NKX2-1 and ß-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.


Assuntos
Blastocisto/fisiologia , Organogênese/genética , Mucosa Respiratória/embriologia , Fator Nuclear 1 de Tireoide/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Teste de Complementação Genética , Pulmão/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Gravidez , Traqueia/embriologia
4.
Am J Respir Cell Mol Biol ; 64(3): 292-307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095997

RESUMO

Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Pneumopatias/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Tecnologia Biomédica , Ensaios Clínicos como Assunto , Terapia Genética , Humanos
5.
Semin Fetal Neonatal Med ; 27(1): 101322, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953760

RESUMO

Neonatal diseases such as hypoxic ischemic encephalopathy, diseases of prematurity and congenital disorders carry increased morbidity and mortality. Despite technological advancements, their incidence remains largely unabated. Stem cell (SC) interventions are novel therapies in the neonatal world. In pre-clinical models of neonatal diseases, SC applications have shown encouraging results. SC sources vary, with the bone marrow being the most utilized. However, the ability to harvest bone marrow SCs from neonates is limited. Placental-tissue derived SCs (PTSCs), provide an alternative and highly attractive source. Human placentas, the cornerstone of fetal survival, are abundant with such cells. Comparing to adult pools, PTSCs exhibit increased potency, decreased immunogenicity and stronger anti-inflammatory effects. Several types of PTSCs have been identified, with mesenchymal stem cells being the most utilized population. This review will focus on PTSCs and their pre-clinical and clinical applications in neonatology.


Assuntos
Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Doenças do Prematuro , Adulto , Feminino , Humanos , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Doenças do Recém-Nascido/terapia , Doenças do Prematuro/epidemiologia , Placenta , Gravidez , Células-Tronco
6.
Cell Rep ; 41(7): 111641, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384107

RESUMO

Long-term impacts of diet have been well studied; however, the immediate response of the intestinal epithelium to a change in nutrients remains poorly understood. We use physiological metrics and single-cell transcriptomics to interrogate the intestinal epithelial cell response to a high-fat diet (HFD). Within 1 day of HFD exposure, mice exhibit altered whole-body physiology and increased intestinal epithelial proliferation. Single-cell transcriptional analysis on day 1 reveals a cell-stress response in intestinal crypts and a shift toward fatty acid metabolism. By 3 days of HFD, computational trajectory analysis suggests an emergence of progenitors, with a transcriptional profile shifting from secretory populations toward enterocytes. Furthermore, enterocytes upregulate lipid absorption genes and show increased lipid absorption in vivo over 7 days of HFD. These findings demonstrate the rapid intestinal epithelial response to a dietary change and help illustrate the essential ability of animals to adapt to shifting nutritional environments.


Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Adaptação Fisiológica , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA