Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Psychiatry ; 27(3): 1816-1828, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34737456

RESUMO

Alzheimer's disease (AD) is characterized by the deposition of amyloid ß peptide (Aß) in the brain. The neuropeptide somatostatin (SST) regulates Aß catabolism by enhancing neprilysin (NEP)-catalyzed proteolytic degradation. However, the mechanism by which SST regulates NEP activity remains unclear. Here, we identified α-endosulfine (ENSA), an endogenous ligand of the ATP-sensitive potassium (KATP) channel, as a negative regulator of NEP downstream of SST signaling. The expression of ENSA is significantly increased in AD mouse models and in patients with AD. In addition, NEP directly contributes to the degradation of ENSA, suggesting a substrate-dependent feedback loop regulating NEP activity. We also discovered the specific KATP channel subtype that modulates NEP activity, resulting in the Aß levels altered in the brain. Pharmacological intervention targeting the particular KATP channel attenuated Aß deposition, with impaired memory function rescued via the NEP activation in our AD mouse model. Our findings provide a mechanism explaining the molecular link between KATP channel and NEP activation, and give new insights into alternative strategies to prevent AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Neprilisina/metabolismo , Somatostatina/metabolismo
2.
J Biol Chem ; 293(9): 3118-3125, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298895

RESUMO

Endoplasmic reticulum (ER) stress is believed to play an important role in the etiology of Alzheimer's disease (AD). The accumulation of misfolded proteins and perturbation of intracellular calcium homeostasis are thought to underlie the induction of ER stress, resulting in neuronal dysfunction and cell death. Several reports have shown an increased ER stress response in amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic (Tg) AD mouse models. However, whether the ER stress observed in these mouse models is actually caused by AD pathology remains unclear. APP and PS1 contain one and nine transmembrane domains, respectively, for which it has been postulated that overexpressed membrane proteins can become wedged in a misfolded configuration in ER membranes, thereby inducing nonspecific ER stress. Here, we used an App-knockin (KI) AD mouse model that accumulates amyloid-ß (Aß) peptide without overexpressing APP to investigate whether the ER stress response is heightened because of Aß pathology. Thorough examinations indicated that no ER stress responses arose in App-KI or single APP-Tg mice. These results suggest that PS1 overexpression or mutation induced a nonspecific ER stress response that was independent of Aß pathology in the double-Tg mice. Moreover, we observed no ER stress in a mouse model of tauopathy (P301S-Tau-Tg mice) at various ages, suggesting that ER stress is also not essential in tau pathology-induced neurodegeneration. We conclude that the role of ER stress in AD pathogenesis needs to be carefully addressed in future studies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Técnicas de Introdução de Genes , Animais , Linhagem Celular , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL
3.
FEBS Lett ; 598(13): 1576-1590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789405

RESUMO

Alzheimer's disease (AD) involves reduced glutathione levels, causing oxidative stress and contributing to neuronal cell death. Our prior research identified diminished glutamate-cysteine ligase catalytic subunit (GCLC) as linked to cell death. However, the effect of GCLC on AD features such as amyloid and tau pathology remained unclear. To address this, we investigated amyloid pathology and tau pathology in mice by combining neuron-specific conditional GCLC knockout mice with amyloid precursor protein (App) knockin (KI) or microtubule-associated protein tau (MAPT) KI mice. Intriguingly, GCLC knockout resulted in an increased Aß42/40 ratio. Additionally, GCLC deficiency in MAPT KI mice accelerated the oligomerization of tau through intermolecular disulfide bonds. These findings suggest that the decline in glutathione levels, due to aging or AD pathology, may contribute to the progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Glutationa , Neurônios , Fragmentos de Peptídeos , Proteínas tau , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Glutationa/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética , Camundongos Knockout , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Modelos Animais de Doenças , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
4.
Sci Rep ; 13(1): 1109, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670138

RESUMO

Accumulating evidence suggests that glutathione loss is closely associated with the progression of neurodegenerative disorders. Here, we found that the neuronal conditional-knockout (KO) of glutamyl-cysteine-ligase catalytic-subunit (GCLC), a rate-limiting enzyme for glutathione synthesis, induced brain atrophy accompanied by neuronal loss and neuroinflammation. GCLC-KO mice showed activation of C1q, which triggers engulfment of neurons by microglia, and disease-associated-microglia (DAM), suggesting that activation of microglia is linked to the neuronal loss. Furthermore, gasdermins, which regulate inflammatory form of cell death, were upregulated in the brains of GCLC-KO mice, suggesting the contribution of pyroptosis to neuronal cell death in these animals. In particular, GSDME-deficiency significantly attenuated the hippocampal atrophy and changed levels of DAM markers in GCLC-KO mice. Finally, we found that the expression of GCLC was decreased around amyloid plaques in AppNL-G-F AD model mice. AppNL-G-F mouse also exhibited inflammatory events similar to GCLC-KO mouse. We propose a mechanism by which a vicious cycle of oxidative stress and neuroinflammation enhances neurodegenerative processes. Furthermore, GCLC-KO mouse will serve as a useful tool to investigate the molecular mechanisms underlying neurodegeneration and in the development of new treatment strategies to address neurodegenerative diseases.


Assuntos
Gasderminas , Doenças Neuroinflamatórias , Camundongos , Animais , Glutationa/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo
5.
J Biochem ; 172(4): 233-243, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35818334

RESUMO

Amyloid-ß and tau pathologies are important factors leading to neurodegeneration in Alzheimer's disease (AD); however, the molecular mechanisms that link these pathologies remain unclear. Assuming that important though as yet unidentified factors inhibit/accelerate tau pathology and neuronal cell death under amyloid pathology, we sought to isolate and identify tau-interacting proteins from mouse brains with or without amyloid pathology. Among the proteins that were identified, we focused on protein arginine methyltransferase 8 (PRMT8), which interacts with tau specifically in the absence of amyloid pathology. To investigate the role of PRMT8 in the pathogenesis of AD, we conducted Prmt8 gene deletion and overexpression experiments in AppNL-G-F/MAPT double knock-in mice and analysed the resulting pathological alterations. PRMT8-knockout did not alter the AD pathology in double knock-in mice, whereas PRMT8-overexpression promoted tau phosphorylation, neuroinflammation and vacuole degeneration. To evaluate if such a PRMT8-induced vacuole degeneration depends on tau pathology, PRMT8 was overexpressed in tau-KO mice, which were consequently found to exhibit vacuole degeneration. In addition, proteomic analyses showed that PRMT8 overexpression facilitated the arginine methylation of vimentin. Abnormal protein methylation could be involved in PRMT8-induced brain pathologies. Taken together, PRMT8 may play an important role in the formation of tau pathology and vacuole degeneration.


Assuntos
Doença de Alzheimer , Proteínas de Transporte , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Arginina/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica , Vacúolos/metabolismo , Vimentina/metabolismo , Proteínas tau/metabolismo
6.
Sci Adv ; 8(23): eabm6155, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675411

RESUMO

We previously developed single App knock-in mouse models of Alzheimer's disease (AD) that harbor the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice). We have now generated App knock-in mice devoid of the Swedish mutations (AppG-F mice) and evaluated its characteristics. Amyloid ß peptide (Aß) pathology was exhibited by AppG-F mice from 6 to 8 months of age and was accompanied by neuroinflammation. Aß-secretase inhibitor, verubecestat, attenuated Aß production in AppG-F mice, but not in AppNL-G-F mice, indicating that the AppG-F mice are more suitable for preclinical studies of ß-secretase inhibition given that most patients with AD do not carry the Swedish mutations. Comparison of isogenic App knock-in lines revealed that multiple factors, including elevated C-terminal fragment ß (CTF-ß) and humanization of Aß might influence endosomal alterations in vivo. Thus, experimental comparisons between different isogenic App, knock-in mouse lines will provide previously unidentified insights into our understanding of the etiology of AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos
7.
Nat Commun ; 10(1): 2964, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263162

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 10(1): 2394, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160584

RESUMO

To understand the molecular processes that link Aß amyloidosis, tauopathy and neurodegeneration, we screened for tau-interacting proteins by immunoprecipitation/LC-MS. We identified the carboxy-terminal PDZ ligand of nNOS (CAPON) as a novel tau-binding protein. CAPON is an adaptor protein of neuronal nitric oxide synthase (nNOS), and activated by the N-methyl-D-aspartate receptor. We observed accumulation of CAPON in the hippocampal pyramidal cell layer in the AppNL-G-F -knock-in (KI) brain. To investigate the effect of CAPON accumulation on Alzheimer's disease (AD) pathogenesis, CAPON was overexpressed in the brain of AppNL-G-F mice crossbred with MAPT (human tau)-KI mice. This produced significant hippocampal atrophy and caspase3-dependent neuronal cell death in the CAPON-expressing hippocampus, suggesting that CAPON accumulation increases neurodegeneration. CAPON expression also induced significantly higher levels of phosphorylated, oligomerized and insoluble tau. In contrast, CAPON deficiency ameliorated the AD-related pathological phenotypes in tauopathy model. These findings suggest that CAPON could be a druggable AD target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Células Piramidais/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Atrofia , Caspase 3/metabolismo , Morte Celular , Cromatografia Líquida , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Células Piramidais/patologia , Tauopatias , Proteínas tau/metabolismo
9.
Dis Colon Rectum ; 45(9): 1249-54, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12352244

RESUMO

PURPOSE: In North America and other high-risk areas, there has been a proximal shift in the subsite distribution of colorectal cancer. We wanted to determine whether any similar change has occurred in Japan, and where the incidence of this disease has increased sharply. METHODS: Data from the Reports of the Japanese Society for Cancer of the Colon and Rectum were used to analyze the time trend of colorectal cancer in Japan between 1974 and 1994 according to the patients' age at diagnosis and sex, and the site of the tumor within the colon or rectum. RESULTS: The percentage of patients over the age of 70, especially females, increased. The increase in the percentage of right-sided colon cancer in colorectal cancer cases was accompanied by a continuous decline in the percentage of rectal cancer in both sexes at all ages. In general, the percentage of right-sided colon cancer in colon cancer cases was stable in men, but increased in women. The rate among patients older than 70 years increased in men, but predominated and remained stable in women. No proximal shift in colon cancer was found in either sex under the age of 69. CONCLUSION: These findings indicated that a proximal shift in the subsite distribution of colorectal cancer has occurred in Japan. This rightward shift of colorectal cancer is due to the decreasing proportion of rectal cancer. Furthermore, the increasing proportion of older patients, especially females, may be another major determinant of the changing colon cancer subsite distribution.


Assuntos
Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Idoso , Feminino , Humanos , Incidência , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA