Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1422, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807095

RESUMO

OBJECTIVES: Public Health Social Measures (PHSM) such as movement restriction movement needed to be adjusted accordingly during the COVID-19 pandemic to ensure low disease transmission alongside adequate health system capacities based on the COVID-19 situational matrix proposed by the World Health Organization (WHO). This paper aims to develop a mechanism to determine the COVID-19 situational matrix to adjust movement restriction intensity for the control of COVID-19 in Malaysia. METHODS: Several epidemiological indicators were selected based on the WHO PHSM interim guidance report and validated individually and in several combinations to estimate the community transmission level (CT) and health system response capacity (RC) variables. Correlation analysis between CT and RC with COVID-19 cases was performed to determine the most appropriate CT and RC variables. Subsequently, the CT and RC variables were combined to form a composite COVID-19 situational matrix (SL). The SL matrix was validated using correlation analysis with COVID-19 case trends. Subsequently, an automated web-based system that generated daily CT, RC, and SL was developed. RESULTS: CT and RC variables were estimated using case incidence and hospitalization rate; Hospital bed capacity and COVID-19 ICU occupancy respectively. The estimated CT and RC were strongly correlated [ρ = 0.806 (95% CI 0.752, 0.848); and ρ = 0.814 (95% CI 0.778, 0.839), p < 0.001] with the COVID-19 cases. The estimated SL was strongly correlated with COVID-19 cases (ρ = 0.845, p < 0.001) and responded well to the various COVID-19 case trends during the pandemic. SL changes occurred earlier during the increase of cases but slower during the decrease, indicating a conservative response. The automated web-based system developed produced daily real-time CT, RC, and SL for the COVID-19 pandemic. CONCLUSIONS: The indicators selected and combinations formed were able to generate validated daily CT and RC levels for Malaysia. Subsequently, the CT and RC levels were able to provide accurate and sensitive information for the estimation of SL which provided valuable evidence on the progression of the pandemic and movement restriction adjustment for the control of Malaysia.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Malásia/epidemiologia , SARS-CoV-2 , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Pandemias/prevenção & controle , Hospitalização/estatística & dados numéricos
2.
Front Public Health ; 12: 1289622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544725

RESUMO

Introduction: Since the COVID-19 pandemic began, it has spread rapidly across the world and has resulted in recurrent outbreaks. This study aims to describe the COVID-19 epidemiology in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate for each outbreak from the beginning of the pandemic in 2020 till endemicity of COVID-19 in 2022 in Malaysia. Methods: Data was sourced from the GitHub repository and the Ministry of Health's official COVID-19 website. The study period was from the beginning of the outbreak in Malaysia, which began during Epidemiological Week (Ep Wk) 4 in 2020, to the last Ep Wk 18 in 2022. Data were aggregated by Ep Wk and analyzed in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate by years (2020 and 2022) and for each outbreak of COVID-19. Results: A total of 4,456,736 cases, 35,579 deaths and 58,906,954 COVID-19 tests were reported for the period from 2020 to 2022. The COVID-19 incidence rate, death rate, CFR and test positivity rate were reported at 1.085 and 0.009 per 1,000 populations, 0.80 and 7.57%, respectively, for the period from 2020 to 2022. Higher cases, deaths, testing, incidence/death rate, CFR and test positivity rates were reported in 2021 and during the Delta outbreak. This is evident by the highest number of COVID-19 cases, ICU admissions, ventilatory requirements and deaths observed during the Delta outbreak. Conclusion: The Delta outbreak was the most severe compared to other outbreaks in Malaysia's study period. In addition, this study provides evidence that outbreaks of COVID-19, which are caused by highly virulent and transmissible variants, tend to be more severe and devastating if these outbreaks are not controlled early on. Therefore, close monitoring of key epidemiological indicators, as reported in this study, is essential in the control and management of future COVID-19 outbreaks in Malaysia.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Malásia/epidemiologia , Surtos de Doenças , Hospitalização
3.
Front Public Health ; 11: 1213514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693699

RESUMO

Background: Globally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia. Methods: This study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase. Results: Dengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20-34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = -0.901) with COVID-19 cases during the COVID-19 pandemic. Conclusion: There was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases.


Assuntos
COVID-19 , Dengue , Humanos , Masculino , Povo Asiático , COVID-19/epidemiologia , Dengue/epidemiologia , Malásia/epidemiologia , Pandemias , Incidência , Feminino
4.
Epidemiol Health ; 45: e2023093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905314

RESUMO

OBJECTIVES: This study aimed to develop susceptible-exposed-infectious-recovered-vaccinated (SEIRV) models to examine the effects of vaccination on coronavirus disease 2019 (COVID-19) case trends in Malaysia during Phase 3 of the National COVID-19 Immunization Program amidst the Delta outbreak. METHODS: SEIRV models were developed and validated using COVID-19 case and vaccination data from the Ministry of Health, Malaysia, from June 21, 2021 to July 21, 2021 to generate forecasts of COVID-19 cases from July 22, 2021 to December 31, 2021. Three scenarios were examined to measure the effects of vaccination on COVID-19 case trends. Scenarios 1 and 2 represented the trends taking into account the earliest and latest possible times of achieving full vaccination for 80% of the adult population by October 31, 2021 and December 31, 2021, respectively. Scenario 3 described a scenario without vaccination for comparison. RESULTS: In scenario 1, forecasted cases peaked on August 28, 2021, which was close to the peak of observed cases on August 26, 2021. The observed peak was 20.27% higher than in scenario 1 and 10.37% lower than in scenario 2. The cumulative observed cases from July 22, 2021 to December 31, 2021 were 13.29% higher than in scenario 1 and 55.19% lower than in scenario 2. The daily COVID-19 case trends closely mirrored the forecast of COVID-19 cases in scenario 1 (best-case scenario). CONCLUSIONS: Our study demonstrated that COVID-19 vaccination reduced COVID-19 case trends during the Delta outbreak. The compartmental models developed assisted in the management and control of the COVID-19 pandemic in Malaysia.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Malásia/epidemiologia , Vacinas contra COVID-19 , Modelos Epidemiológicos , Previsões , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA