RESUMO
Oxidative stress, inflammation and neovascularization are the key pathological events that are implicated in human age-related macular degeneration (AMD). There are a limited number of animal models available for evaluating and developing new therapies. Most models represent late exudative or neovascular AMD (nAMD) but there is a relative paucity of models that mimic early events in AMD. The purpose of this study is to characterize the evolution of oxidative stress, inflammation, retinal degeneration and neovascularization in a rat model of AMD, created by subretinal injection of human lipid hydroperoxide (HpODE) that found in the sub-macular region in aged and AMD patients. Subretinal HpODE induced retinal pigment epithelium (RPE) and retinal degeneration resulting in loss of RPE cells, photoreceptors and retinal thinning. RPE degeneration and atrophy were detected by day 5, followed by neural tissue degeneration at day 12 with robust TUNEL positive cells. Western blot analysis confirmed an increase in pro-apoptotic Bak protein at day 12 in retinal tissues. Oxidative damage biomarkers (4-hydroxynonenal, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine) increased in retinal tissue from days 5-12. Müller glial activation was observed in the HpODE injected area at day 5 followed by its remodeling and migration in the outer retina by day 20. RT-qPCR analysis further indicated upregulation of pro-inflammatory genes (TNF-α, IL-1ß and IL-6) both in retinal and RPE/choroidal tissue as early as day 2 and persisted until day 12. Upregulation of oxidative stress markers such as NADPH oxidase (NOX and DOUX family) was detected early in retinal tissue by day 2 followed by its upregulation in choroidal tissue at day 5. Neovascularization was demonstrated from day 12 to day 20 post HpODE injection in choroidal tissue. The results from this study indicate that subretinal HpODE induces advanced AMD phenotypes comprising many aspects of both dry/early and late) and neovascular/late AMD as observed in humans. Within 3 weeks via oxidative damage, upregulation of reactive oxygen species and pro-inflammatory genes, pro-apoptotic Bak and pro-angiogenic VEGF upregulation occurs leading to CNV formation. This experimental model of subretinal HpODE is an appropriate model for the study of AMD and provides an important platform for translational and basic research in developing new therapies particularly for early/dry AMD where currently no viable therapies are available.
Assuntos
Neovascularização de Coroide/etiologia , Atrofia Geográfica/induzido quimicamente , Inflamação/etiologia , Peróxidos Lipídicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Neovascularização Retiniana/etiologia , Degeneração Macular Exsudativa/induzido quimicamente , Animais , Biomarcadores/metabolismo , Western Blotting , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Atrofia Geográfica/patologia , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Inflamação/patologia , Microscopia Confocal , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Degeneração Macular Exsudativa/patologiaRESUMO
Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.
Assuntos
Atrofia Geográfica/patologia , Mastócitos/patologia , Animais , Linhagem Celular , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Atrofia Geográfica/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Mastócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Triptases/metabolismoRESUMO
After publication of the article [1], it has been brought to our attention that an author's name has been formatted incorrectly.
RESUMO
Polyamidoamine (PAMAM) dendrimers are multifunctional nanoparticles with tunable physicochemical features, making them promising candidates for targeted drug delivery in the central nervous system (CNS). Systemically administered dendrimers have been shown to localize in activated glial cells, which mediate neuroinflammation in the CNS. These dendrimers delivered drugs specifically to activated microglia, producing significant neurological improvements in multiple brain injury models, including in a neonatal rabbit model of cerebral palsy. To gain further insight into the mechanism of dendrimer cell uptake, we utilized an in vitro model of primary glial cells isolated from newborn rabbits to assess the differences in hydroxyl-terminated generation 4 PAMAM dendrimer (D4-OH) uptake by activated and non-activated glial cells. We used fluorescently-labelled D4-OH (D-Cy5) as a tool for investigating the mechanism of dendrimer uptake. D4-OH PAMAM dendrimer uptake was determined by fluorescence quantification using confocal microscopy and flow cytometry. Our results indicate that although microglial cells in the mixed cell population demonstrate early uptake of dendrimers in this in vitro system, activated microglia take up more dendrimer compared to resting microglia. Astrocytes showed delayed and limited uptake. We also illustrated the differences in mechanism of uptake between resting and activated microglia using different pathway inhibitors. Both resting and activated microglia primarily employed endocytotic pathways, which are enhanced in activated microglial cells. Additionally, we demonstrated that hydroxyl terminated dendrimers are taken up by primary microglia using other mechanisms including pinocytosis, caveolae, and aquaporin channels for dendrimer uptake.
Assuntos
Materiais Biocompatíveis/farmacocinética , Paralisia Cerebral/patologia , Dendrímeros/farmacocinética , Microglia/citologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Lipopolissacarídeos/efeitos adversos , Microglia/química , Microglia/imunologia , Microscopia Confocal , Neuroglia/química , Neuroglia/citologia , Neuroglia/imunologia , CoelhosRESUMO
BACKGROUND: Rett syndrome (RTT) is a pervasive developmental disorder that is progressive and has no effective cure. Immune dysregulation, oxidative stress, and excess glutamate in the brain mediated by glial dysfunction have been implicated in the pathogenesis and worsening of symptoms of RTT. In this study, we investigated a new nanotherapeutic approach to target glia for attenuation of brain inflammation/injury both in vitro and in vivo using a Mecp2-null mouse model of Rett syndrome. METHODS: To determine whether inflammation and immune dysregulation were potential targets for dendrimer-based therapeutics in RTT, we assessed the immune response of primary glial cells from Mecp2-null and wild-type (WT) mice to LPS. Using dendrimers that intrinsically target activated microglia and astrocytes, we studied N-acetyl cysteine (NAC) and dendrimer-conjugated N-acetyl cysteine (D-NAC) effects on inflammatory cytokines by PCR and multiplex assay in WT vs Mecp2-null glia. Since the cysteine-glutamate antiporter (Xc-) is upregulated in Mecp2-null glia when compared to WT, the role of Xc- in the uptake of NAC and L-cysteine into the cell was compared to that of D-NAC using BV2 cells in vitro. We then assessed the ability of D-NAC given systemically twice weekly to Mecp2-null mice to improve behavioral phenotype and lifespan. RESULTS: We demonstrated that the mixed glia derived from Mecp2-null mice have an exaggerated inflammatory and oxidative stress response to LPS stimulation when compared to WT glia. Expression of Xc- was significantly upregulated in the Mecp2-null glia when compared to WT and was further increased in the presence of LPS stimulation. Unlike NAC, D-NAC bypasses the Xc- for cell uptake, increasing intracellular GSH levels while preventing extracellular glutamate release and excitotoxicity. Systemically administered dendrimers were localized in microglia in Mecp2-null mice, but not in age-matched WT littermates. Treatment with D-NAC significantly improved behavioral outcomes in Mecp2-null mice, but not survival. CONCLUSIONS: These results suggest that delivery of drugs using dendrimer nanodevices offers a potential strategy for targeting glia and modulating oxidative stress and immune responses in RTT.
Assuntos
Acetilcisteína/uso terapêutico , Encéfalo/patologia , Dendrímeros/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Microglia/efeitos dos fármacos , Síndrome de Rett/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Dendrímeros/farmacologia , Modelos Animais de Doenças , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Mutação/genética , Síndrome de Rett/genética , Síndrome de Rett/patologia , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/genéticaRESUMO
1ß-d-Arabinofuranosylcytosine (Cytarabine, Ara-C) is a key drug in the treatment of acute myeloid leukemia. Ara-C has a number of limitations such as a rapid deactivation by cytidine deaminase leading to the formation of a biologically inactive metabolite, Ara-U (1ß-d-arabinofuranosyluracil), a low lipophilicity, and fast clearance from the body. To address these problems, we developed a conjugate in which hydroxyl-terminated PAMAM dendrimer, G4-OH ["D"] and PEG were used as carriers for the drug (Ara-C). The conjugates were synthesized using an efficient multistep protection/deprotection method resulting in the formation of a covalent bond between the primary hydroxyl group of Ara-C and dendrimer/PEG. The structure, physicochemical properties, and drug release kinetics were characterized extensively. (1)H NMR and MALDI-TOF mass spectrometry suggested covalent attachment of 10 Ara-C molecules to the dendrimer. The release profile of Ara-C in human plasma and in PBS buffer (pH 7.4) showed that the conjugates released the drug over 14 days in PBS, with the release sped up in plasma. In PBS, while most of the drug is released from PEG-Ara-C, the dendrimer continues to release the drug in a sustained fashion. The results also suggested that the formation of the inactive form of Ara-C (Ara-U) was delayed upon conjugation of Ara-C to the polymers. The inhibition of cancer growth by the dendrimer-Ara-C and PEG-Ara-C conjugates was evaluated in A549 human adenocarcinoma epithelial cells. Both dendrimer- and PEG-Ara-C conjugates were 4-fold more effective in inhibition of A549 cells compared to free Ara-C after 72 h of treatment.
Assuntos
Citarabina/farmacologia , Dendrímeros/química , Polietilenoglicóis/química , Arabinofuranosiluracila/sangue , Arabinofuranosiluracila/química , Arabinofuranosiluracila/farmacologia , Linhagem Celular Tumoral , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Citarabina/sangue , Citarabina/química , Citidina Desaminase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Leucemia Mieloide Aguda/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype. 2-(3-Mercaptopropyl) pentanedioic acid (2-MPPA) is the first GCPII inhibitor that underwent clinical trials. Unfortunately, immunological toxicities have hindered 2-MPPA clinical translation. Targeted delivery of 2-MPPA specifically to activated microglia and astrocytes that over-express GCPII has the potential to mitigate glutamate excitotoxicity and attenuate neuroinflammation. In this study, we demonstrate that 2-MPPA when conjugated to generation-4, hydroxyl-terminated polyamidoamine (PAMAM) dendrimers (D-2MPPA) localize specifically in activated microglia and astrocytes only in newborn rabbits with cerebral palsy (CP), not in controls. D-2MPPA treatment led to higher 2-MPPA levels in the injured brain regions compared to 2-MPPA treatment, and the extent of D-2MPPA uptake correlated with the injury severity. D-2MPPA was more efficacious than 2-MPPA in decreasing extracellular glutamate level in ex vivo brain slices of CP kits, and in increasing transforming growth factor beta 1 (TGF-ß1) level in primary mixed glial cell cultures. A single systemic intravenous dose of D-2MPPA on postnatal day 1 (PND1) decreased microglial activation and resulted in a change in microglial morphology to a more ramified form along with amelioration of motor deficits by PND5. These results indicate that targeted dendrimer-based delivery specifically to activated microglia and astrocytes can improve the efficacy of 2-MPPA by attenuating glutamate excitotoxicity and microglial activation.
Assuntos
Paralisia Cerebral , Dendrímeros , Animais , Coelhos , Paralisia Cerebral/metabolismo , Dendrímeros/metabolismo , Ácido Glutâmico , Encéfalo/metabolismo , Microglia/metabolismo , Inflamação/tratamento farmacológicoRESUMO
Retinal Müller glia function as injury-induced stem-like cells in zebrafish but not mammals. However, insights gleaned from zebrafish have been applied to stimulate nascent regenerative responses in the mammalian retina. For instance, microglia/macrophages regulate Müller glia stem cell activity in the chick, zebrafish, and mouse. We previously showed that post-injury immunosuppression by the glucocorticoid dexamethasone accelerated retinal regeneration kinetics in zebrafish. Similarly, microglia ablation enhances regenerative outcomes in the mouse retina. Targeted immunomodulation of microglia reactivity may therefore enhance the regenerative potential of Müller glia for therapeutic purposes. Here, we investigated potential mechanisms by which post-injury dexamethasone accelerates retinal regeneration kinetics, and the effects of dendrimer-based targeting of dexamethasone to reactive microglia. Intravital time-lapse imaging revealed that post-injury dexamethasone inhibited microglia reactivity. The dendrimer-conjugated formulation: (1) decreased dexamethasone-associated systemic toxicity, (2) targeted dexamethasone to reactive microglia, and (3) improved the regeneration enhancing effects of immunosuppression by increasing stem/progenitor proliferation rates. Lastly, we show that the gene rnf2 is required for the enhanced regeneration effect of D-Dex. These data support the use of dendrimer-based targeting of reactive immune cells to reduce toxicity and enhance the regeneration promoting effects of immunosuppressants in the retina.
Assuntos
Dendrímeros , Peixe-Zebra , Animais , Camundongos , Microglia , Dendrímeros/farmacologia , Retina/fisiologia , Terapia de Imunossupressão , Dexametasona/farmacologia , MamíferosRESUMO
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease where muscle weakness and neuromuscular junction (NMJ) denervation precede motor neuron cell death. Although acetylcholine is the canonical neurotransmitter at the mammalian NMJ synapse, glutamate has recently been identified as a critical neurotransmitter for NMJ development and maintenance. One source of glutamate is through the catabolism of N-acetyl-aspartyl-glutamate (NAAG), which is found in mM concentrations in mammalian motoneurons, where it is released upon stimulation and hydrolyzed to glutamate by the glial enzyme glutamate carboxypeptidase II (GCPII). Using the SOD1G93A model of ALS, we found an almost fourfold elevation of GCPII enzymatic activity in SOD1G93A versus WT muscle and a robust increase in GCPII expression which was specifically associated with activated macrophages infiltrating the muscle. 2-(Phosphonomethyl)pentanedioic acid (2PMPA) is a potent GCPII inhibitor which robustly blocks glutamate release from NAAG but is highly polar with limited tissue penetration. To improve this, we covalently attached 2PMPA to a hydroxyl polyamidoamine (PAMAM-G4-OH) dendrimer delivery system (D-2PMPA) which is known to target activated macrophages in affected tissues. Systemic D-2PMPA therapy (20 mg/kg 2PMPA equivalent; IP 2 × /week) was found to localize in muscle macrophages in SOD1G93A mice and completely normalize the enhanced GCPII activity. Although no changes in body weight or survival were observed, D-2PMPA significantly improved grip strength and inhibited the loss of NMJ innervation in the gastrocnemius muscles. Our finding that inhibiting elevated GCPII activity in SOD1G93A muscle can prolong muscle function and delay NMJ denervation may have early therapeutic implications for ALS patients.
Assuntos
Esclerose Lateral Amiotrófica , Dendrímeros , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Animais , Dendrímeros/farmacologia , Denervação , Modelos Animais de Doenças , Glutamatos , Humanos , Mamíferos , Camundongos , Camundongos Transgênicos , Músculo Esquelético , Superóxido Dismutase , Superóxido Dismutase-1/genéticaRESUMO
Cognitive impairment is a common aspect of multiple sclerosis (MS) for which there are no treatments. Reduced brain N-acetylaspartylglutamate (NAAG) levels are linked to impaired cognition in various neurological diseases, including MS. NAAG levels are regulated by glutamate carboxypeptidase II (GCPII), which hydrolyzes the neuropeptide to N-acetyl-aspartate and glutamate. GCPII activity is upregulated multifold in microglia following neuroinflammation. Although several GCPII inhibitors, such as 2-PMPA, elevate brain NAAG levels and restore cognitive function in preclinical studies when given at high systemic doses or via direct brain injection, none are clinically available due to poor bioavailability and limited brain penetration. Hydroxyl-dendrimers have been successfully used to selectively deliver drugs to activated glia. Methods: We attached 2-PMPA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-2PMPA) using a click chemistry approach. Cy5-labelled-D-2PMPA was used to visualize selective glial uptake in vitro and in vivo. D-2PMPA was evaluated for anti-inflammatory effects in LPS-treated glial cultures. In experimental autoimmune encephalomyelitis (EAE)-immunized mice, D-2PMPA was dosed biweekly starting at disease onset and cognition was assessed using the Barnes maze, and GCPII activity was measured in CD11b+ hippocampal cells. Results: D-2PMPA showed preferential uptake into microglia and robust anti-inflammatory activity, including elevations in NAAG, TGFß, and mGluR3 in glial cultures. D-2PMPA significantly improved cognition in EAE mice, even though physical severity was unaffected. GCPII activity increased >20-fold in CD11b+ cells from EAE mice, which was significantly mitigated by D-2PMPA treatment. Conclusions: Hydroxyl dendrimers facilitate targeted drug delivery to activated microglia. These data support further development of D-2PMPA to attenuate elevated microglial GCPII activity and treat cognitive impairment in MS.
Assuntos
Dendrímeros , Esclerose Múltipla , Animais , Cognição , Dendrímeros/farmacologia , Modelos Animais de Doenças , Camundongos , Microglia , Esclerose Múltipla/tratamento farmacológicoRESUMO
PURPOSE: This study aims to measure burst pressures in 3 mm clear corneal incisions sealed with ReSure, a biodegradable hydrogel sealant, and to compare it to traditional 10-0 nylon sutures and unsealed controls. DESIGN: An ex vivo animal study. METHODS: 3 mm clear corneal incisions were performed in rabbit eyes (ex vivo). The burst pressure was determined, and then, the incisions were sealed with either ReSure glue or a single 10-0 nylon suture. Burst pressure measurements were repeated. RESULTS: Fourteen eyes were included. The median burst pressure in the suture-control group (7 eyes) prior to suture application was 7 mmHg (range: 0-45); the median burst pressure in the 7 glue-controls was 36 mmHg (range: 5-61, p = 0.08 for the comparison of the two control groups). The median burst pressure in the glue group was 93 mmHg (range: 39-129, p = 0.043 when compared to glue-control). The median burst pressure in the suture group was 158 mmHg (range: 70-180, p = 0.018 when compared to suture-control). There was no statistically significant difference in burst pressure values between the glue and suture groups (p = 0.08). CONCLUSION: In this study, ReSure glue applied to 3 mm clear corneal incisions provided sufficient resistance to elevated intraocular pressure when compared to controls. The results of this study suggest that ReSure glue may be comparable to a single 10-0 nylon suture in resisting fluid egress during the early postoperative period.
RESUMO
Pancreatic cancer represents a life threatening disease with rising mortality. Although the synergistic combination of gemcitabine and albumin-bound paclitaxel has proven to enhance the median survival rates as compared to gemcitabine alone, their systemic and repeated co-administration has been associated with serious toxic side effects and poor patient compliance. For this purpose, we designed a thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the local and sustained delivery of gemcitabine (GEM) and paclitaxel (PTX) to pancreatic cancer. GEM and PTX were loaded into PR_b-functionalized liposomes targeting integrin α5ß1, which was shown to be overexpressed in pancreatic cancer. PR_b is a fibronectin-mimetic peptide that binds to α5ß1 with high affinity and specificity. The PR_b liposomes were encapsulated into a poly(δ-valerolactone-co-D,L-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-D,L-lactide) (PVLA-PEG-PVLA) hydrogel and demonstrated sustained release of both drugs compared to PR_b-functionalized liposomes free in solution or free drugs in the hydrogel. Moreover, the hydrogel-nanoparticle system was proven to be very efficient towards killing monolayers of human pancreatic cancer cells (PANC-1), and showed a significant reduction in the growth pattern of PANC-1 tumor spheroids as compared to hydrogels encapsulating non-targeted liposomes with GEM/PTX or free drugs, after a one week treatment period. Our hybrid hydrogel-nanoparticle system is a promising platform for the local and sustained delivery of GEM/PTX to pancreatic cancer, with the goal of maximizing the therapeutic efficacy of this synergistic drug cocktail while potentially minimizing toxic side effects and eliminating the need for repeated co-administration.
Assuntos
Nanopartículas , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , GencitabinaRESUMO
Inflammation and neovascularization are key pathological events in human age-related macular degeneration (AMD). Activated microglia/macrophages (mi/ma) and retinal pigmented epithelium (RPE) play an active role in every stage of disease progression. Systemic therapies that can target these cells and address both inflammation and neovascularization will broaden the impact of existing therapies and potentially open new avenues for early AMD where there are no viable therapies. Utilizing a clinically relevant rat model of AMD that mirrors many aspects that of human AMD pathological events, we show that systemic hydroxyl-terminated polyamidoamine dendrimer-triamcinolone acetonide conjugate (D-TA) is selectively taken up by the injured mi/ma and RPE (without the need for targeting ligands). D-TA suppresses choroidal neovascularization significantly (by >80%, >50-fold better than free drug), attenuates inflammation in the choroid and retina, by limiting macrophage infiltration in the pathological area, significantly suppressing pro-inflammatory cytokines and pro-angiogenic factors, with minimal side effects to healthy ocular tissue and other organs. In ex vivo studies on human postmortem diabetic eyes, the dendrimer is also taken up into choroidal macrophages. These results suggest that the systemic hydroxyl dendrimer-drugs can offer new avenues for therapies in treating early/dry AMD and late/neovascular AMD alone, or in combination with current anti-VEGF therapies. This hydroxyl dendrimer platform but conjugated to a different drug is undergoing clinical trials for severe COVID-19, potentially paving the way for faster clinical translation of similar compounds for ocular and retinal disorders.
Assuntos
COVID-19 , Dendrímeros , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Animais , Corioide , Humanos , Inflamação/tratamento farmacológico , Ratos , SARS-CoV-2 , Fator A de Crescimento do Endotélio Vascular , Acuidade VisualRESUMO
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis. Corticosteroids including triamcinolone acetonide (TA), known for their antiangiogenic effects, are used in treating retinal diseases, but their use is significantly limited by side effects including cataracts and glaucoma. Generation-4 hydroxyl polyamidoamine dendrimer nanoparticles are utilized to deliver TA to activated microglia in the ischemic retina in a mouse model of oxygen-induced retinopathy (OIR). Following intravitreal injection, dendrimer-conjugated TA (D-TA) exhibits selective localization and sustained retention in activated microglia in disease-associated areas of the retina. D-TA, but not free TA, suppresses inflammatory cytokine production, microglial activation, and preretinal neovascularization in OIR. In addition, D-TA, but not free TA, ameliorates OIR-induced neuroretinal and visual dysfunction. These results indicate that activated microglia are a promising therapeutic target for retinal angiogenesis and neuroprotection in ischemic retinal diseases. Furthermore, dendrimer-based targeted therapy and specifically D-TA constitute a promising treatment approach for DR, offering increased and sustained drug efficacy with reduced side effects.
RESUMO
Poor transport of neuropharmaceutics through central nervous system (CNS) barriers limits the development of effective treatments for CNS disorders. We present the facile synthesis of a novel neuroinflammation-targeting polyethylene glycol-based dendrimer (PEGOL-60) using an efficient click chemistry approach. PEGOL-60 reduces synthetic burden by achieving high hydroxyl surface density at low generation, which plays a key role in brain penetration and glia targeting of dendrimers in CNS disorders. Systemically administered PEGOL-60 crosses impaired CNS barriers and specifically targets activated microglia/macrophages at the injured site in diverse animal models for cerebral palsy, glioblastoma, and age-related macular degeneration, demonstrating its potential to overcome impaired blood-brain, blood-tumor-brain, and blood-retinal barriers and target key cells in the CNS. PEGOL-60 also exhibits powerful intrinsic anti-oxidant and anti-inflammatory effects in inflamed microglia in vitro. Therefore, PEGOL-60 is an effective vehicle to specifically deliver therapies to sites of CNS injury for enhanced therapeutic outcomes in a range of neuroinflammatory diseases.
Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Dendrímeros/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Polietilenoglicóis , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Fenômenos Químicos , Técnicas de Química Sintética , Dendrímeros/síntese química , Dendrímeros/química , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Terapia de Alvo Molecular , Polietilenoglicóis/química , CoelhosRESUMO
Traumatic brain injury (TBI) is a significant medical problem with limited treatment options and is one of the main causes of life-long disability. Neuroinflammation orchestrated by activated microglia/macrophages at the site of injury plays a critical role in the onset of many pathological events following TBI, leading to blood brain barrier (BBB) dysfunction, neuronal damage and long term neuronal and behavioral deficits. Current treatment involves intravenous administration of anti-inflammatory drugs which have limited clinical outcomes only when dosed within the early time window after injury. Hence there is an urgent need to develop improved drug delivery systems which have potential to cross impaired BBB, target and deliver drugs selectively to activated microglia/macrophages at the sites of injury, and suppress the detrimental effects of acute inflammation. In this study, we have used Sinomenine (Sino), a potent anti-inflammatory and antioxidant drug conjugated to hydroxyl terminated generation-4 PAMAM dendrimer (D-Sino) as a potential therapy for attenuating early inflammation in TBI. D-Sino conjugates were synthesized using highly robust copper-catalyzed click reaction with high purity. D-Sino conjugates enhanced the intracellular availability of Sino due to their rapid cellular uptake, significantly attenuated early/acute inflammation by suppressing pro-inflammatory cytokines (TNF-α, IL-1ß, CCL-3 and IL-6), and reduced oxidative stress (iNOS and NO) in LPS activated murine macrophages (RAW 264.7) by inhibiting NF-κB activation and its nuclear translocation (the root cause for inflammation inception) significantly more as compared to the free drug. Upon systemic administration in a rabbit model of pediatric TBI, D-Sino conjugates specifically targeted activated microglia/macrophages at the site of injury in the brain. Single dose of D-Sino attenuated inflammation in the injured brain areas by suppressing inflammatory cytokines expression whereas free Sino treatment did not demonstrate a significant effect. Together, these results suggest that D-Sino conjugate may open up new avenues for increasing the therapeutic window in the treatment of early inflammation and for improving the efficacy of the drug in TBI. Moreover, this treatment can work in conjunction with current clinical practices such as therapeutic hypothermia and pharmacologically induced coma for many indications associated with TBI, where acute inflammation plays a critical role in disease progression.
Assuntos
Lesões Encefálicas Traumáticas , Dendrímeros , Morfinanos , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Criança , Dendrímeros/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Microglia , Morfinanos/uso terapêutico , CoelhosRESUMO
N-Acetyl-l-cysteine (NAC) commonly used as an antidote in acetaminophen poisoning has shown promise in the treatment of neurological disorders such as cerebral palsy (CP). However, NAC suffers from drawbacks such as poor oral bioavailability and suboptimal blood-brain-barrier (BBB) permeability limiting its clinical success. It was previously demonstrated that intravenous administration of dendrimer-NAC (D-NAC) conjugates have shown significant promise in the targeted treatment of neuroinflammation, in multiple preclinical models. Development of an oral formulation of D-NAC may open new administrative routes for this compound. Here, we report the gastrointestinal stability, in vitro transepithelial permeability, and in vivo oral absorption and pharmacokinetics in rats of a pediatric formulation of D-NAC containing Capmul MCM (glycerol monocaprylate) as a penetration enhancer. D-NAC was stable for 6â¯h in all five simulated gastrointestinal fluids with no signs of chemical degradation. The apparent permeability (Papp) of D-NAC increased 9-fold in the formulation containing Capmul. The area under the curve [AUC]0-∞ of D-NAC with Capmul increased by 47% when compared to D-NAC alone. These results indicate that an oral pediatric formulation containing D-NAC and Capmul can be an effective option for the treatment of neuroinflammation.
Assuntos
Acetilcisteína/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Dendrímeros/química , Portadores de Fármacos , Acetilcisteína/química , Acetilcisteína/farmacocinética , Administração Oral , Fatores Etários , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Área Sob a Curva , Células CACO-2 , Caprilatos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Glicerídeos/química , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Permeabilidade , Ratos Sprague-Dawley , Tecnologia Farmacêutica/métodosRESUMO
PURPOSE: To investigate the efficacy of a single subconjunctival injection of dendrimer-dexamethasone conjugate in a rabbit model of induced autoimmune dacryoadenitis (AID). METHODS: Dendrimer biodistribution after subconjunctival injection in AID animals was evaluated using Cy5-labelled dendrimer (D-Cy5) and confocal microscopy. Diseased animals were treated with free dexamethasone (Free-Dex), dendrimer-dexamethasone (D-Dex), or saline via a single subconjunctival injection. The efficacy was evaluated using various clinical evaluations, such as Schirmer's test, tear breakup time (TBUT), and fluorescein and rose Bengal staining. Histopathology was evaluated by H&E staining and immunostaining. Levels of inflammatory cytokines and aquaporin proteins in the LGs were determined by real-time PCR. RESULTS: Subconjunctivally administered dendrimers selectively localized in the inflamed LGs, and were taken up by the infiltrating cells. At two weeks post single dose-treatment, the D-Dex group showed improved clinical evaluations. No significant changes were observed in other groups. H&E staining demonstrated less inflammatory cell infiltration and fewer atrophic acini in D-Dex group, compared to those treated with saline or Free-Dex. Immunohistochemistry demonstrated that the intensity of CD-18 (+) and RTLA (+) was weaker in LGs in the D-Dex group than in other treatment groups. Pro-inflammatory gene expression levels of MMP9, IL6, IL8, and TNFα were significantly decreased in the D-Dex group compared to the Free-Dex and saline group. CONCLUSIONS: The dendrimer exhibits pathology-dependent biodistribution in the inflamed LGs. Subconjunctivally administered D-Dex suppressed LG inflammation, leading to partial recovery of LG function with clinical improvement in induced AID. Sjögren's patients may benefit from this targeted nanomedicine approach.
Assuntos
Dacriocistite/complicações , Preparações de Ação Retardada/administração & dosagem , Dendrímeros/administração & dosagem , Dexametasona/administração & dosagem , Síndromes do Olho Seco/tratamento farmacológico , Animais , Aquaporinas/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Injeções Intraoculares , Masculino , CoelhosRESUMO
Dendrimer-N-acetyl cysteine (D-NAC) conjugate has shown significant promise in multiple preclinical models of brain injury and is undergoing clinical translation. D-NAC is a generation-4 hydroxyl-polyamidoamine dendrimer conjugate where N-acetyl cysteine (NAC) is covalently bound through disulfide linkages on the surface of the dendrimer. It has shown remarkable potential to selectively target and deliver NAC to activated microglia and astrocytes at the site of brain injury in several animal models, producing remarkable improvements in neurological outcomes at a fraction of the free drug dose. Here we present a highly efficient, scalable, greener, well-defined route to the synthesis of D-NAC, and validate the structure, stability and activity to define the benchmarks for this compound. This newly developed synthetic route has significantly reduced the synthesis time from three weeks to one week, uses industry-friendly solvents/reagents, and involves simple purification procedures, potentially enabling efficient scale up.
RESUMO
Traumatic brain injury (TBI) is a serious public health problem, often with devastating consequences for patients and their families. Affordable and timely therapies can have a substantial impact on outcomes in severe TBI. Despite the common use of sedatives and anesthetics in the acute phase of TBI management, their effect on glial cells is not well understood. We investigated the effect of a commonly used sedative, pentobarbital, on glial cells and their uptake of nanoparticles. First, we studied how pentobarbital affects BV2 mouse microglial cells in culture. The cell morphology was imaged by confocal microscopy and analyzed. Our results suggest that microglia change to a more swollen, 'activated' shape with pentobarbital (cell area increased by approximately 20%, p<0.001). Such glial activation may have negative implications for the ability of the injured brain to clear edema. Second, we investigated how pentobarbital treatment affected nanoparticle uptake. BV-2 mouse microglial cells in the presence and absence of pentobarbital were treated with fluorescently-labeled, hydroxyl-functionalized poly(amidoamine) dendrimer nanoparticles (Dendrimer-Cy5). We demonstrated that the presence of pentobarbital increased the dendrimer nanoparticle uptake significantly (~2-fold both 2 and 6h following treatment). This semi-quantitative fluorescence assessment was broadly consistent among confocal image analysis, flow cytometry, and fluorescence quantification of cell-extracted dendrimer-Cy5. Although anesthetics appear to activate microglia, the increased uptake of dendrimer nanoparticles in their presence can be exploited to deliver drug-loaded nanoparticles directly to microglia after TBI. These drugs could restore glial and glymphatic function, enabling efficient drainage of waste and fluid from the brain and effectively improving recovery after TBI. A key future direction is to validate these findings in TBI models.