Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 20(1): 105-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787961

RESUMO

Degradability of polycations under physiological conditions is an attractive feature for their use in biomedical applications, such as the delivery of nucleic acids. This study aims to design polycations with tunable nonenzymatic degradability. A series of cationic N-substituted polyaspartamides were prepared to possess primary amine via various lengths of alkyl spacers in side chains. The degradation rate of each polyaspartamide derivative was determined by size exclusion chromatography under different pH conditions. The N-substituted polyaspartamide containing a 2-aminoethyl moiety in the side chain (PAsp(AE)) showed considerable degradability under physiological conditions (pH 7.4, 37 °C). In contrast, the N-substituted polyaspartamides bearing a longer alkyl spacer in the side chain, i.e. the 3-aminopropyl (PAsp(AP)) and 4-aminobutyl moieties (PAsp(AB)), more strongly suppressed degradation. Further, a positive correlation was observed between the degradation rate of N-substituted polyaspartamides and a deprotonation degree of primary amines in their side chains. Therefore, we conclude that the deprotonated primary amine in the side chain of N-substituted polyaspartamides can induce the degradation of the main chain through the activation of amide nitrogen in the side chain. When N-substituted polyaspartamides were utilized as a messenger RNA (mRNA) delivery vehicle via formation of polyion complexes (PICs), degradable PAsp(AE) elicited significantly higher mRNA expression efficiency in cultured cells compared to PAsp(AP) and PAsp(AB). The higher efficiency of PAsp(AE) might be due to the facilitated destabilization of PICs within the cells, directed toward mRNA release. Additionally, degradation of PAsp(AE) considerably reduced its cytotoxicity. Thus, our study highlights a useful design of well-defined cationic poly(amino acid)s with tunable nonenzymatic degradability.

2.
J Control Release ; 342: 148-156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995697

RESUMO

Development of efficient delivery vehicles for in vitro transcribed mRNA (IVT mRNA) is currently a major challenge in nanomedicines. For systemic mRNA delivery, we developed a series of cationic amphiphilic polyaspartamide derivatives (PAsp(DET/R)s) carrying various alicyclic (R) moieties with diethylenetriamine (DET) in the side chains to form mRNA-loaded polyplexes bearing stability under physiological conditions and possessing endosomal escape functionality. While the size and ζ-potential of polyplexes were comparable among various PAsp(DET/R)s, the transfection efficiencies of polyplexes were considerably varied due to difference in the R moieties of PAsp(DET/R)s and were described by an octanol-water (or buffer at pH 7.3) distribution coefficient (logD7.3). The critical logD7.3 for the efficient in vitro transfection of mRNA was indicated at -2.7 to -1.8. The polyplexes with logD7.3 > -1.8 elicited the much higher in vitro transfection efficiencies. After systemic administration, the polyplexes with logD7.3 from -1.8 to -1.3 elicited the significant mRNA expression specifically in the lungs. The highest mRNA expression in the lungs was achieved by a polyaspartamide derivative having a cyclohexylethyl group (PAsp(DET/CHE)), which induced more than 10-fold increase in mRNA transfection efficiency compared to commercially available lipid nanoparticles. The higher mRNA expression by polyplexes in the lungs was explained well by the preferential lung accumulation of intact mRNA, as determined by quantitative real-time PCR. Our results demonstrate that PAsp(DET/R)s are a promising synthetic material for the enhanced systemic IVT mRNA delivery.


Assuntos
Lipossomos , Cátions , Nanopartículas , RNA Mensageiro/genética , Transfecção
3.
ACS Appl Bio Mater ; 4(11): 7790-7799, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006762

RESUMO

In vitro transcribed messenger RNA (mRNA) delivery to macrophages is a promising therapeutic modality for inflammatory diseases because it can modulate the immunological activity of macrophages. However, efficient macrophage-targeted mRNA delivery remains challenging. Herein, we fabricated silica-coated polyion complexes (PICs), termed SilPICs, via bioinspired silicification for stable encapsulation of mRNA and scavenger receptor (SR)-mediated macrophage targeting. Silica coating was readily performed by simply mixing mRNA-loaded PICs with tetramethyl orthosilicate in aqueous media at 25 °C. The silica shell formation was verified by a slight increase in size (∼18 nm), a conversion of ζ-potential from positive (+22 mV) to negative (-23 mV), the peak appearance derived from silanol groups and siloxane bonds in the IR spectra, and elemental analyses by scanning transmission electron microscopy-energy-dispersive X-ray spectrometry (STEM-EDS). The silica shell efficiently protected the mRNA payload from enzymatic degradation in a fetal bovine serum-containing medium. Meanwhile, the reversibility of the silica shell allowed mRNA release from SilPICs after silica dissolution into silicic acids under diluted conditions. Furthermore, SilPICs elicited 20-fold higher mRNA transfection efficiency in the macrophage cell line RAW264.7 compared to noncoated PICs, presumably due to the facilitated cellular internalization by the silica shell. These enhancements were compromised in the RAW264.7 cells incubated with dextran sulfate and poly(inosinic acid) as inhibitors of SR type A1 and were not observed in cultured CT26 colon cancer cells, which are SR-negative cells. Collectively, SilPIC is a promising mRNA delivery vehicle with both mRNA protectability and macrophage targetability.


Assuntos
Macrófagos , Dióxido de Silício , Animais , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , RNA Mensageiro/genética , Dióxido de Silício/química , Transfecção
4.
Chem Commun (Camb) ; 56(66): 9477-9480, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32677638

RESUMO

A photo-responsive nanovesicle is fabricated by polyion complex (PIC) formation between poly(ethylene glycol) (PEG)-block-polypeptides and photo-reactive oligodeoxynucleotides (PROs)/anti-sense oligonucleotides (ASOs). The ultraviolet (UV) light triggers reversible crosslinking between PROs and ASOs in the vesicular membrane, providing the nanovesicle with switchable stability under physiological conditions. The resulting nanovesicle allows efficient cellular internalization, leading to significant UV-triggered gene knockdown in cultured cells.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Nanoestruturas/química , Oligodesoxirribonucleotídeos/química , Raios Ultravioleta , Células A549 , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Corantes Fluorescentes/química , Humanos , Microscopia Confocal , Nanoestruturas/toxicidade , Peptídeos/química , Polietilenoglicóis/química
5.
ACS Cent Sci ; 5(11): 1866-1875, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807688

RESUMO

Rapid and transient expression of in vitro transcribed mRNA (IVT mRNA) in target cells is a current major challenge in genome engineering therapy. To improve mRNA delivery efficiency, a series of amphiphilic polyaspartamide derivatives were synthesized to contain various hydrophobic moieties with cationic diethylenetriamine (DET) moieties in the side chain and systematically compared as mRNA delivery vehicles (or mRNA-loaded polyplexes). The obtained results demonstrated that the side chain structures of polyaspartamide derivatives were critical for the mRNA delivery efficiency of polyplexes. Interestingly, when the mRNA delivery efficiencies (or the luciferase expression levels in cultured cells) were plotted against an octanol-water partition coefficient (log P) as an indicator of hydrophobicity, a log P threshold was clearly observed to obtain high levels of mRNA expression. Indeed, 3.5 orders of magnitude difference in the expression level is observed between -2.45 and -2.31 in log P. This threshold of log P for the mRNA transfection efficiency apparently correlated with those for the polyplex stability and cellular uptake efficiency. Among the polyaspartamide derivatives with log P > -2.31, a polyaspartamide derivative with 11 residues of 2-cyclohexylethyl (CHE) moieties and 15 residues of DET moieties in the side chains elicited the highest mRNA expression in cultured cells. The optimized polyplex further accomplished highly efficient, rapid, and transient IVT mRNA expression in mouse brain after intracerebroventricular and intrathecal injection. Ultimately, the polyplex allowed for the highly efficient target gene deletion via the expression of Streptococcus pyogenes Cas9 nuclease-coding IVT mRNA in the ependymal layer of ventricles in a reporter mouse model. These results demonstrate the utility of log P driven polymer design for in vivo IVT mRNA delivery.

6.
J Biomater Sci Polym Ed ; 28(10-12): 1109-1123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278046

RESUMO

Surface functionalization of nanoparticles is a crucial factor for nanoparticle-mediated drug and nucleic acid delivery. Particularly, the density of targeting ligands on nanoparticle significantly affects the affinity of nanoparticles to specific cellular surface (or receptor) through the multivalent binding effect. Herein, multilayered polyion complexes (mPICs) are prepared to possess varying densities of cyclic RGD peptide (cRGD) ligands for cancer-targeted small interfering RNA (siRNA) delivery. A template PIC is first prepared by mixing siRNAs with homo catiomers of N-substituted polyaspartamide bearing tetraethylenepentamine (PAsp(TEP)) in aqueous solution, followed by silica-coating through silicate condensation reaction. Then, silica-coated PICs (sPICs) are further covered with block catiomers of PAsp(TEP) and poly(ethylene glycol) (PEG) equipped with cRGD ligand. Successful preparation of targeted mPICs is confirmed from the changes in size and ζ-potential and the elemental analysis by transmission electron microscopy. Notably, the number of cRGD ligands per mPIC is regulated by altering the silicate concentration upon preparation of sPICs, which is confirmed by fluorescence correlation spectroscopy using fluorescent-labeled block catiomers. Ultimately, the targeted mPICs with a higher number of cRGD ligands demonstrate more efficient cellular uptake in cultured cancer cells, leading to enhanced gene silencing activity.


Assuntos
Nanopartículas/química , Peptídeos Cíclicos/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , Dióxido de Silício/química , Sequência de Bases , Células HeLa , Humanos , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA